Unlabelled: Wear debris-induced inhibition of bone regeneration and extensive bone resorption were common features in peri-prosthetic osteolysis (PPO). Here, we investigated the effect of melatonin on titanium particle-stimulated osteolysis in a murine calvariae model and mouse-mesenchymal-stem cells (mMSCs) culture system. Melatonin inhibited titanium particle-induced osteolysis and increased bone formation at osteolytic sites, confirmed by radiological and histomorphometric data. Furthermore, osteoclast numbers decreased dramatically in the low- and high-melatonin administration mice, as respectively, compared with the untreated animals. Melatonin alleviated titanium particle-induced depression of osteoblastic differentiation and mineralization in mMSCs. Mechanistically, melatonin was found to reduce the degradation of β-catenin, levels of which were decreased in presence of titanium particles both in vivo and in vitro. To further ensure whether the protective effect of melatonin was mediated by the Wnt/β-catenin signaling pathway, ICG-001, a selective β-catenin inhibitor, was added to the melatonin-treated groups and was found to attenuate the effect of melatonin on mMSC mineralization. We also demonstrated that melatonin modulated the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin via activation of Wnt/β-catenin signaling pathway. These findings strongly suggest that melatonin represents a promising candidate in the treatment of PPO.

Statement Of Significance: Peri-prosthetic osteolysis, initiated by wear debris-induced inhibition of bone regeneration and extensive bone resorption, is the leading cause for implant failure and reason for revision surgery. In the current study, we demonstrated for the first time that melatonin can induce bone regeneration and reduce bone resorption at osteolytic sites caused by titanium-particle stimulation. These effects might be mediated by activating Wnt/β-catenin signaling pathway and enhancing osteogenic differentiation. Meanwhile, the ability of melatonin to modulate the balance between receptor activator of nuclear factor kappa-B ligand and osteoprotegerin mediated by Wnt/β-catenin signaling pathway, thereby suppressing osteoclastogenesis, may be implicated in the protective effects of melatonin on titanium-particle-induced bone resorption. These results suggested that melatonin can be considered as a promising therapeutic agent for the prevention and treatment of peri-prosthetic osteolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2017.01.034DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin signaling
20
signaling pathway
20
bone resorption
16
melatonin
13
titanium particle-induced
12
bone regeneration
12
peri-prosthetic osteolysis
12
particle-induced osteolysis
8
activation wnt/β-catenin
8
wear debris-induced
8

Similar Publications

Neuromesodermal progenitors (NMPs) are a vertebrate cell type that contribute descendants to both the spinal cord and the mesoderm. The undifferentiated bipotential NMP state is maintained when both Wnt signaling is active and Sox2 is present. We used transgenic reporter lines to live-image both Wnt activity and Sox2 levels in NMPs and observed a unique cellular ratio in NMPs compared to NMP-derived mesoderm or neural tissue.

View Article and Find Full Text PDF

Interplay of epilepsy and long-term potentiation: implications for memory.

Front Neurosci

January 2025

Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico.

The interplay between long-term potentiation (LTP) and epilepsy represents a crucial facet in understanding synaptic plasticity and memory within neuroscience. LTP, a phenomenon characterized by a sustained increase in synaptic strength, is pivotal in learning and memory processes, particularly in the hippocampus. This review delves into the intricate relationship between LTP and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin to those seen in LTP contribute to the hyperexcitable state of epilepsy.

View Article and Find Full Text PDF

Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!