Lid domain plasticity and lipid flexibility modulate enzyme specificity in human monoacylglycerol lipase.

Biochim Biophys Acta Mol Cell Biol Lipids

Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; IAS-5/INM-9 Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany. Electronic address:

Published: May 2017

Human monoacylglycerol lipase (MAGL) is a membrane-interacting enzyme that generates pro-inflammatory signaling molecules. For this reason, MAGL inhibition is a promising strategy to treat pain, cancer, and neuroinflammatory diseases. MAGL can hydrolyze monoacylglycerols bearing an acyl chain of different lengths and degrees of unsaturation, cleaving primarily the endocannabinoid 2-arachidonoylglycerol. Importantly, the enzymatic binding site of MAGL is confined by a 75-amino-acid-long, flexible cap domain, named 'lid domain', which is structurally similar to that found in several other lipases. However, it is unclear how lid domain plasticity affects catalysis in MAGL. By integrating extensive molecular dynamics simulations and free-energy calculations with mutagenesis and kinetic experiments, we here define a lid-domain-mediated mechanism for substrate selection and binding in MAGL catalysis. In particular, we clarify the key role of Phe159 and Ile179, two conserved residues within the lid domain, in regulating substrate specificity in MAGL. We conclude by proposing that other structurally related lipases may share this lid-domain-mediated mechanism for substrate specificity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2017.01.002DOI Listing

Publication Analysis

Top Keywords

lid domain
12
domain plasticity
8
human monoacylglycerol
8
monoacylglycerol lipase
8
structurally lipases
8
lid-domain-mediated mechanism
8
mechanism substrate
8
substrate specificity
8
magl
7
plasticity lipid
4

Similar Publications

Sesaminol is an organic compound which shows the strong antioxidant, anti-inflammatory, and neuroprotective properties. Sesaminol triglucoside (STG) is glycosylated form of sesaminol and abundantly exists in sesame seeds. However, typical β-glucosidases could not deglycosylate STG probably due to its bulky aglycone.

View Article and Find Full Text PDF

Staphylococcus aureus is a major cause of infections like bacteremia, pneumonia, and endocarditis. These infections are often linked to the ability of S. aureus to form biofilms.

View Article and Find Full Text PDF

Unlabelled: Despite a deep understanding of Parkinson's disease (PD) and levodopa-induced dyskinesia (LID) pathogenesis, current therapies are insufficient to effectively manage the progressive nature of PD or halt LID. Growing hypotheses suggested the NOD-like receptor 3 (NLRP3) inflammasome and orphan nuclear receptor-related 1 (Nurr1)/glycogen synthase kinase-3β (GSK-3β) and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α)/sirtuin 3 (SIRT3) pathways as potential avenues for halting neuroinflammation and oxidative stress in PD.

Aims: This study investigated for the first time the neuroprotective effect of canagliflozin against PD and LID in rotenone-intoxicated rats, emphasizing the crosstalk among the NLRP3/caspase-1 cascade, PGC-1α/SIRT3 pathway, mammalian target of rapamycin (mTOR)/beclin-1, and Nurr1/β-catenin/GSK-3β pathways as possible treatment strategies in PD and LID.

View Article and Find Full Text PDF

The activity regulation of lipase from Aspergillus fumigatus by ligand through allosteric exploration.

Int J Biol Macromol

January 2025

Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Article Synopsis
  • Lipase activity from Aspergillus fumigatus (AFL) was enhanced by an effector called HMD, which was found to bind to an allosteric site on the enzyme, boosting its activity by about 46% through increased lid mobility.
  • * Experimental and computational analysis showed that while HMD enhances AFL activity in solution, coupling AFL with HMD-modified microspheres led to a decrease in hydrolysis activity by 14.3% due to reduced lid mobility.
  • * The study highlights how HMD affects AFL's conformational dynamics, underlining the importance of understanding allosteric regulation in exoenzymes, which is often overlooked.*
View Article and Find Full Text PDF

Bacterial lipases are versatile extracellular enzymes with a catalytic triad at the active site and a flexible 'lid' that modulates catalytic accessibility. We combined computational modeling with preliminary in vitro testing to assess the structural stability and activity of the Pseudomonas aeruginosa PAO1 lipase (PAL). We evaluated several systems consisting of the native and mutant forms of the lipase in n-hexane using molecular dynamics simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!