Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry.

J Chromatogr A

Department of Chemical and Biological Engineering, ChELSI Institute, Mappin Street, University of Sheffield, S1 3JD, UK. Electronic address:

Published: February 2017

RNA interference has provided valuable insight into a wide range of biological systems and is a powerful tool for the analysis of gene function. The exploitation of this pathway to block the expression of specific gene targets holds considerable promise for the development of novel RNAi-based insect management strategies. In addition, there are a wide number of future potential applications of RNAi to control agricultural insect pests as well as its use for prevention of diseases in beneficial insects. The potential to synthesise large quantities of dsRNA by in-vitro transcription or in bacterial systems for RNA interference applications has generated significant demand for the development and application of high throughput analytical tools for the rapid extraction, purification and analysis of dsRNA. Here we have developed analytical methods that enable the rapid purification of dsRNA from associated impurities from bacterial cells in conjunction with downstream analyses. We have optimised TRIzol extractions in conjunction with a single step protocol to remove contaminating DNA and ssRNA, using RNase T1/DNase I digestion under high-salt conditions in combination with solid phase extraction to purify the dsRNA. In addition, we have utilised and developed IP RP HPLC for the rapid, high resolution analysis of the dsRNA. Furthermore, we have optimised base-specific cleavage of dsRNA by RNase A and developed a novel method utilising RNase T1 for RNase mass mapping approaches to further characterise the dsRNA using liquid chromatography interfaced with mass spectrometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5267946PMC
http://dx.doi.org/10.1016/j.chroma.2016.12.062DOI Listing

Publication Analysis

Top Keywords

dsrna
8
mass spectrometry
8
rna interference
8
analysis dsrna
8
purification characterisation
4
characterisation dsrna
4
dsrna ion
4
ion pair
4
pair reverse
4
reverse phase
4

Similar Publications

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

Background: Endogenous Alu RNAs form double-stranded RNAs recognized by double-stranded RNA sensors and activate IRF and NF-kB transcriptional paths and innate immunity. Deamination of adenosines to inosines by the ADAR family of enzymes, a process termed A-to-I editing, disrupts double-stranded RNA structure and prevents innate immune activation. Innate immune activation is observed in Alzheimer's disease, the most common form of dementia.

View Article and Find Full Text PDF

Foliar spray double-stranded RNA targeting HvIAP1 induces high larval and adult mortality in Henosepilachna vigintioctopunctata.

Pest Manag Sci

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Background: Exogenous double-stranded RNA (dsRNA) has the potential to serve as an effective alternative to conventional chemical pesticides for the control of insect pests, because it can specifically inhibit essential gene expression in these organisms. However, identifying suitable gene targets remains a crucial step in the development of RNA interference (RNAi)-based pest control strategies.

Results: In this study, three apoptosis-related genes were selected to evaluate their potential for RNAi-induced lethality in Henosepilachna vigintioctopunctata via foliar spray dsRNAs.

View Article and Find Full Text PDF

Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.

View Article and Find Full Text PDF

Exogenous dsRNA triggers sequence-specific RNAi and fungal stress responses to control Magnaporthe oryzae in Brachypodium distachyon.

Commun Biol

January 2025

Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.

In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!