Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by symptoms such as rigor, tremor and bradykinesia. A reliable and early diagnosis could improve the development of early therapeutic strategies before death of dopaminergic neurons leads to the first clinical symptoms. The sFIDA (surface-based fluorescence intensity distribution analysis) assay is a highly sensitive method to determine the concentration of α-synuclein (α-syn) oligomers which are presumably the major toxic isoform of α-syn and potentially the most direct biomarker for PD. Oligomer-based diagnostic tests require standard molecules that closely mimic the native oligomer. This is particularly important for calibration and assessment of inter-assay variation. In this study, we generated a standard in form of α-syn coated silica nanoparticles (α-syn-SiNaPs) that are in the size range of α-syn oligomers and provide a defined number of α-syn epitopes. The preparation of the sFIDA assay was realized on an automated platform to allow handling of high number of samples and reduce the effects of human error. The assay outcome was analyzed by determination of coefficient of variation and linearity for the applied α-syn-SiNaPs concentrations. Additionally, the limit of detection and lower limit of quantification were determined yielding concentrations in the lower femtomolar range.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2017.01.010DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
α-syn oligomers
8
α-syn
5
nanoparticle standards
4
standards immuno-based
4
immuno-based quantitation
4
quantitation α-synuclein
4
α-synuclein oligomers
4
oligomers diagnostics
4
diagnostics parkinson's
4

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Significance: In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.

Background: This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development.

View Article and Find Full Text PDF

From Europe to the World: EMA's Leadership in Alzheimer Disease Treatment.

Am J Ther

January 2025

James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis and Parkinson's Disease: Brain Tissue Transcriptome Analysis Reveals Interactions.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.

This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts.

View Article and Find Full Text PDF

Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!