Mitochondrial uncoupling in cancer cells: Liabilities and opportunities.

Biochim Biophys Acta Bioenerg

Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:

Published: August 2017

Acquisition of the endosymbiotic ancestor of mitochondria was a critical event in eukaryote evolution. Mitochondria offered an unparalleled source of metabolic energy through oxidative phosphorylation and allowed the development of multicellular life. However, as molecular oxygen had become the terminal electron acceptor in most eukaryotic cells, the electron transport chain proved to be the largest intracellular source of superoxide, contributing to macromolecular injury, aging, and cancer. Hence, the 'contract of endosymbiosis' represents a compromise between the possibilities and perils of multicellular life. Uncoupling proteins (UCPs), a group of the solute carrier family of transporters, may remove some of the physiologic constraints that link mitochondrial respiration and ATP synthesis by mediating inducible proton leak and limiting oxidative cell injury. This important property makes UCPs an ancient partner in the metabolic adaptation of cancer cells. Efforts are underway to explore the therapeutic opportunities stemming from the intriguing relationship of UCPs and cancer. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2017.01.005DOI Listing

Publication Analysis

Top Keywords

cancer cells
8
multicellular life
8
cancer
5
mitochondrial uncoupling
4
uncoupling cancer
4
cells liabilities
4
liabilities opportunities
4
opportunities acquisition
4
acquisition endosymbiotic
4
endosymbiotic ancestor
4

Similar Publications

Stemness-associated cell states are linked to chemotherapy resistance in AML. We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance.

View Article and Find Full Text PDF

Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.

Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.

View Article and Find Full Text PDF

Oncolytic viruses represent a promising class of immunotherapeutic agents for the treatment of malignant tumors. The proposed mechanism of action of various oncolytic viruses has initially been explained by the ability of such viruses to selectively lyse tumor cells without damaging healthy ones. Recently, there have emerged more studies determining the effect of the antiviral immunostimulating mechanisms on the effectiveness of treatment in cancer patients.

View Article and Find Full Text PDF

Aim: This study aimed to identify the genes associated with the development of lung adenocarcinoma (LUAD) and potential therapeutic targets.

Methods: Differentially expressed genes (DEGs) were identified by self-transcriptome sequencing of tumor tissues and paracancerous tissues resected during surgery and combined with The Cancer Genome Atlas (TCGA) data to screen for the genes associated with LUAD prognosis. The expression was validated at mRNA and protein levels, and the gene knockdown was used to examine the impact and underlying mechanisms on lung cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!