An ideal antibiotic is an antibacterial agent that kills or inhibits the growth of all harmful bacteria in a host, regardless of site of infection without affecting beneficial gut microbes (gut flora) or causing undue toxicity to the host. Sadly, no such antibiotics exist. What exist are many effective Gram-positive antibacterial agents as well as broad-spectrum agents that provide treatment of certain Gram-negative bacteria but not holistic treatment of all bacteria. However effectiveness of all antibacterial agents is being rapidly eroded due to resistance. This viewpoint provides an overview of today's antibiotics, challenges and potential path forward of discovery and development of new (ideal) antibiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2017.01.003 | DOI Listing |
Small Methods
January 2025
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China.
Asymmetric carbon-based materials (ACBMs) have received significant attention in scientific research due to their unique structures and properties. Through the introduction of heterogeneous atoms and the construction of asymmetric ordered/disordered structures, ACBMs are optimized in terms of electrical conductivity, pore structure, and chemical composition and exhibit multiple properties such as hydrophilicity, hydrophobicity, optical characteristics, and magnetic behavior. Here, the recent research progress of ACBMs is reviewed, focusing on the potential of these materials for electrochemical, catalysis, and biomedical applications and their unique advantages over conventional symmetric carbon-based materials.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
College of Pharmacy, University of Illinois, Chicago, IL 60612, USA.
Artificial Intelligence (AI) has the disruptive potential to transform patients' lives via innovations in pharmaceutical sciences, drug development, clinical trials, and manufacturing. However, it presents significant challenges, ethical concerns, and risks across sectors and societies. AI's rapid advancement has revealed regulatory gaps as existing public policies struggle to keep pace with the challenges posed by these emerging technologies.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Resource Environmental and Safety Engineering, University of South China, Hengyang 421001, China.
To solve the issue of inconvenient and dangerous manual operation during the installation and removal of the main pipe plugging plate in the steam generator in nuclear power plants, a ten-degree-of-freedom plugging robot was designed in the present study that includes a collaborative robotic arm coupled with a servo electric cylinder. By establishing a joint coordinate system for the robot model, a D-H parameter model for the plate plugging robot was established, and the forward and inverse kinematics were solved. The volume level approximate convex decomposition algorithm was used to fit the steam generator model with a convex packet, and an experimental simulation platform was constructed.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
The convergence of Artificial Intelligence (AI) and neuroscience is redefining our understanding of the brain, unlocking new possibilities in research, diagnosis, and therapy. This review explores how AI's cutting-edge algorithms-ranging from deep learning to neuromorphic computing-are revolutionizing neuroscience by enabling the analysis of complex neural datasets, from neuroimaging and electrophysiology to genomic profiling. These advancements are transforming the early detection of neurological disorders, enhancing brain-computer interfaces, and driving personalized medicine, paving the way for more precise and adaptive treatments.
View Article and Find Full Text PDFMicroorganisms
January 2025
CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal.
The intensification of aquaculture has escalated disease outbreaks and overuse of antibiotics, driving the global antimicrobial resistance (AMR) crisis. Antimicrobial peptides (AMPs) provide a promising alternative due to their rapid, broad-spectrum activity, low AMR risk, and additional bioactivities, including immunomodulatory, anticancer, and antifouling properties. AMPs derived from aquatic invertebrates, particularly marine-derived, are well-suited for aquaculture, offering enhanced stability in high-salinity environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!