Aim Of The Study: Propafenone (PPF) is an antiarrhythmic drug, metabolized mainly by CYP2D6 to 5-hydroxypropafenone (5OH-PPF) and by CYP3A4 to norpropafenone (NOR-PPF). CYP2D6 shows a high degree of genetic polymorphism which is associated with diminished antiarrhythmic efficacy or cardiac seizures/cardiotoxicity. This study aimed to investigate the effect of the CYP2D6 polymorphism on the pharmacokinetics of PPF and its two main metabolites. The usefulness of PPF/5OH-PPF ratio for CYP2D6 phenotyping in healthy adults was also evaluated.
Methods: Twelve healthy volunteers, 3 poor metabolizers (PM), 2 intermediate metabolizers (IM) and seven extensive metabolizers (EM) received an oral dose of PPF. Concentrations of PPF and its metabolites were analyzed in serum samples over 27h.
Results: The PPF/5OH-PPF ratio distinguished EMs from PMs, but not from IMs. In PMs, the mean transit time (MTT) values were almost the same for PPF and NOR-PPF and much higher than those of EMs and IMs. 5OH-PPF was not detected in EMs. Mean MTT values of 5OH-PPF and NOR-PPF in IMs were 5.27- and 1.52-fold higher than those of EMs.
Conclusion: A single time point serum PPF-MR approach is a useful tool to identify PMs. CYP2D6 polymorphism significantly affects the pharmacokinetics of PPF and its two metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.therap.2016.10.005 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China. Electronic address:
Flavonoids are the major medicinally active ingredients that exert potential effects in Amomum tsao-ko. In total, 277 flavonoid metabolites were identified in fresh and dried fruits of three different accessions of A. tsao-ko (Amomum tsao-ko), which could be classified into eight classes with more metabolites classified as flavonol.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Di(2-ethylhexyl) phthalate (DEHP) is a widespread ubiquitous phthalate environmental contaminant. The male reproductive toxicity (MRT) from exposure to DEHP and its main metabolite, mono(2-ethylhexyl) phthalate (MEHP), has been well documented. Fully elucidating its toxic mechanism and discovering effective antagonists are desirable means to reduce the health risks of DEHP.
View Article and Find Full Text PDFConserv Physiol
January 2025
Wildlife Ecology and Conservation Science Lab, Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855-5301, USA.
Faecal cortisol metabolites (FCMs) are increasingly used to index physiological stress in wildlife. Cortisol and other stress hormones act to mobilize glucose, providing energy for the organism to respond to environmental perturbations. Cortisol, the predominant glucocorticoid (GC) in most mammals, is metabolized by the liver and excreted as FCMs.
View Article and Find Full Text PDFAnim Sci J
January 2025
National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd, Dong-E Country, Shandong Province, China.
Weaning is essential for foal growth and development. We determined the intestinal flora structure of donkey foals at the end of weaning (PreW_4d) and three stages after weaning (PostW_4d, PostW_8d, and PostW_15d) to explore the effects of weaning on intestinal development of donkey foals. The results showed that the main microbial flora in the gut of the donkey foal were Firmicutes and Bacteroides, and the proportion of Firmicutes gradually increased with weaning, which was an important reflection of the donkey foal's adaptability to the transition from lactose liquid feed to plant fiber solid feed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India.
The research highlights the importance of exploring endophytic microbiomes of medicinal plants to uncover their potential for secondary metabolite production and their role in the biosynthesis of host-derived compounds. This study was aimed to isolate leaf endophytic bacteria of Rauvolfia serpentina, investigate their antibacterial, antioxidant potentials and detect host-origin compound reserpine using Reverse Phase High-Performance Liquid Chromatography (RPHPLC). Untargeted analysis via Ultra High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) was conducted for profiling main phytochemicals in the leaves and to explore potential bioactive compounds in bacterial extracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!