AI Article Synopsis

  • A new method for measuring ECG through tap water is developed to enhance safety for individuals with cardiopulmonary disorders while bathing, minimizing the intrusiveness of electrodes.
  • Electrode positioning employs capacitive coupling outside the bathtub, allowing for hidden and non-invasive monitoring of heart and respiration signals without disturbing the bathing experience.
  • Successful experiments demonstrated that the bathtub system effectively captured ECG signals and respiration curves, showing strong agreement with traditional direct measurement methods.

Article Abstract

Background: Taking a bath sometimes poses a risk for subjects with chronic cardiopulmonary disorders, due to the thermal effect and water pressure on his/her body. The ECG measurement would be helpful for the early recognition of abnormal cardiac beats and respiratory conditions. This paper describes a new attempt to improve on previous bathtub ECG measurement techniques that had electrodes placed inside the bathtub that were intrusive to the subjects' bathing experience. This study is concerned with the initial development of a method to measure an electrocardiogram (ECG) through tap water without conscious awareness of the presence of electrodes that are placed outside the bathtub wall.

Methods: A configuration of capacitive coupling electrodes placed outside the bathtub was designed so that the electrodes could be hidden. The capacitive coupling was made from the electrodes to the water through the bathtub wall. Two electrodes with an active shielding amplifier covered further by an electromagnetic shield were fixed to the outside surface of the bathtub wall, near the bather's right scapula and left foot. The potential difference between these two electrodes, similar to the bipolar lead-II ECG, was amplified to obtain raw signals inclusive of ECG/QRS components. Respiration intervals were also derived from ECG/RR intervals. Comparison experiments between this bathtub method and conventional direct methods with spot-electrodes and a chest-band sensor were made using 10 healthy male volunteers (22.2 ± 0.98 years).

Results: The ECG signal was detectable through tap water as well as water with differing conductivity resulting from mixing bathwater additives with the water. ECG signals and respiration curves derived from ECG/RR intervals were successfully obtained in all subjects. The intervals of the ECG/RR and respiration obtained by the bathtub system and by the direct method were respectively agreed well with each other.

Conclusion: The ECG signal, in particular ECG/QRS components, were successfully detected utilizing capacitive coupling electrodes placed outside the bathtub wall. Also, the ECG/RR and respiration intervals were determined with reasonable accuracy as compared with the conventional direct methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234137PMC
http://dx.doi.org/10.1186/s12938-016-0304-9DOI Listing

Publication Analysis

Top Keywords

capacitive coupling
16
coupling electrodes
16
electrodes bathtub
16
bathtub wall
16
tap water
12
bathtub
10
electrodes
9
utilizing capacitive
8
ecg measurement
8
ecg/qrs components
8

Similar Publications

Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.

View Article and Find Full Text PDF

We demonstrate, using non-equilibrium molecular dynamics simulations, that lipid membrane capacitance varies with surface charge accumulation linked to membrane shape and curvature changes. Specifically, we show that lipid membranes exhibit a hysteretic response when exposed to oscillatory electric fields. The electromechanical coupling in these membranes leads to hysteretic buckling, in which the membrane can spontaneously buckle in one of two distinct directions along the electric field, even for the same ionic charge accumulation at the water-membrane interface.

View Article and Find Full Text PDF

A novel poly(amidoamine)-modified electrolyte-insulator-semiconductor-based biosensor for label-free detection of ATP.

Anal Methods

January 2025

Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.

View Article and Find Full Text PDF

Supercapacitors are rapidly gaining attention as next-generation energy storage devices due to their superior power and energy densities. This study pioneers the investigation of Mn/Zn co-doping in α-Cu₂V₂O₇ (CVO) to enhance its performance as a supercapacitor electrode material. Structural and local Structural properties of Mn/Zn co-doped CVO have been investigated through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and X-ray Absorption Spectroscopy (XAS), revealing significant distortions that enhance supercapacitor performance.

View Article and Find Full Text PDF

In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University (GXU), 100 Daxuedong Road, Xixiangtang District, Nanning 530004 China. Electronic address:

Porous carbons with large surface area (>3000 m/g) and heteroatom dopants have shown great promise as electrode materials for zinc ion hybrid capacitors. Centralized mesopores are effective to accelerate kinetics, and edge nitrogen can efficiently enhance pseudocapacitive capability. It is a great challenge to engineer centralized mesopores and edge nitrogen in large-surface-area porous carbons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!