The QUANTUM II system (Abbott Diagnostics, Irving, Tex.) was evaluated with 65 species of gram-negative bacilli from various culture collections at the Centers for Disease Control. The QUANTUM II system accurately identified 92.5% of 335 isolates tested, as follows: 92.6% of 258 members of the family Enterobacteriaceae, 92.7% of 55 nonfermenters, and 91% of 22 oxidase-positive fermenters. These results were obtained by using the additional biochemical and serologic tests recommended by the manufacturers of the QUANTUM II system. The 25 misidentified cultures generally belonged to newly recognized genera, atypical strains, or slower-growing strains of more widely known genera. The system identified the most commonly encountered organisms at an accuracy of greater than or equal to 95%. The system is efficient, accurate, and rapid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC267048 | PMC |
http://dx.doi.org/10.1128/jcm.27.11.2420-2422.1989 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States.
Understanding charge transport in semiconductor quantum dot (QD) assemblies is important for developing the next generation of solar cells and light-harvesting devices based on QD technology. One of the key factors that governs the transport in such systems is related to the hybridization between the QDs. Recent experiments have successfully synthesized QD molecules, arrays, and assemblies by directly fusing the QDs, with enhanced hybridization leading to high carrier mobilities and coherent band-like electronic transport.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States.
Accurately calculating the diradical character () of molecular systems remains a significant challenge due to the scarcity of experimental data and the inherent multireference nature of the electronic structure. In this study, various quantum mechanical approaches, including broken symmetry density functional theory (BS-DFT), spin-flip time-dependent density functional theory (SF-TDDFT), mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT), complete active space self-consistent field (CASSCF), complete active space second-order perturbation theory (CASPT2), and multiconfigurational pair-density functional theory (MCPDFT), are employed to compute the singlet-triplet energy gaps () and values in Thiele, Chichibabin, and Müller analogous diradicals. By systematically comparing the results from these computational methods, we identify optimally tuned long-range corrected functional CAM-B3LYP in the BS-DFT framework as a most efficient method for accurately and affordably predicting both and values.
View Article and Find Full Text PDFACS Nano
January 2025
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China.
Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity.
View Article and Find Full Text PDFTree Physiol
January 2025
Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
Ink disease caused by the hemibiotrophic root pathogen Phytophthora cinnamomi (Pc) is devastating for the European chestnut (Castanea sativa), unlike Asian chestnuts and interspecific hybrids which are resistant to Pc. The role that hormone responses play for Pc resistance remains little understood, especially regarding the temporal regulation of hormone responses. We explored the relationship between changes in tree health and physiology and alterations in leaf and root phytohormones and primary and secondary metabolites during compatible and incompatible Castanea spp.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
We derive an expression to determine the equilibrium probability distribution of a quantum state in contact with a noisy thermal environment that formally separates contributions from quantum and classical forms of probabilistic uncertainty. A statistical mechanical interpretation of this probability distribution enables us to derive an expression for the minimum free energy costs for arbitrary (reversible or irreversible) quantum state changes. Based on this derivation, we demonstrate that─in contrast to classical systems─the free energy required to erase or reset a qubit depends sensitively on both the fidelity of the target state and on the physical properties of the environment, such as the number of quantum bath states, due primarily to the entropic effects of system-bath entanglement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!