A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrostrictive optical resonators for non-contact displacement measurement. | LitMetric

This paper describes a non-contact transduction mechanism for the measurement of linear displacements that is based on the electrostrictive properties of a polymeric optical resonator. The spherical resonators, with a diameter of ∼1  mm and an average optical quality factor of ∼10, are made using a commercially available polymer (Super Soft Plastic-Manufacturing Company). The spherical resonator is immersed in a homogeneous electric field that is generated by applying a voltage difference between two metallic plates. One of the plates is fixed, whereas the other one is movable. By changing the distance between the plates, the electric field intensity changes, leading to a variation of the mechanical forces (electrostrictive effect) acting on the resonator. This effect, in turn, leads to a change in the morphology of the optical resonator and therefore to a shift of its optical resonances. By tracking the shift of the optical modes, it is possible to determine the displacement of the movable plate. Our results indicate a sensitivity ranging from 0.008 to 0.642  pm/μm with a resolution on the order of a few hundreds of nanometers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.000229DOI Listing

Publication Analysis

Top Keywords

optical resonator
8
electric field
8
shift optical
8
optical
5
electrostrictive optical
4
optical resonators
4
resonators non-contact
4
non-contact displacement
4
displacement measurement
4
measurement paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!