We show that the Bayesian inference of recently measured x-ray diffraction spectra from laser-shocked aluminum [L. B. Fletcher et al., Nat. Photon. 9, 274 (2015)10.1038/nphoton.2015.41] with the one-component-plasma (OCP) model performs remarkably well at estimating the ionic density and temperature. This statistical approach requires many evaluations of the OCP static structure factor, which were done using a recently derived analytic fit. The atomic form factor is approximated by an exponential function in the diffraction window of the first peak. The electronic temperature is then estimated from a comparison of this approximated form factor with the electronic structure of an average atom model. Out-of-equilibrium states, with electrons hotter than ions, are diagnosed for the spectra obtained early after the pump, whereas at a late time delay the plasma is at thermal equilibrium. Apart from the present findings, this OCP-based modeling of warm dense matter has an important role to play in the interpretation of x-ray Thomson scattering measurements currently performed at large laser facilities.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.061202DOI Listing

Publication Analysis

Top Keywords

bayesian inference
8
x-ray diffraction
8
diffraction spectra
8
warm dense
8
dense matter
8
form factor
8
inference x-ray
4
spectra warm
4
matter one-component-plasma
4
one-component-plasma model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!