Phenotypic convergence has confounded evolutionary biologists for centuries, explained as adaptations to shared selective pressures, or alternatively, the result of limited developmental pathways. We tested the relative roles of adaptation and constraint in generating convergent cranial morphologies across a large lizard radiation, the Lacertidae, whose members inhabit diverse environments throughout the Old World and display high amounts of homoplasy associated with ecological niche. Using 3D X-ray computed tomography, we quantified cranial shape variation associated with ontogeny, allometry, and ecology, covering all lacertid genera and one-third of species diversity. Landmark-based geometric morphometrics showed that cranial shape varied significantly among biomes, with substantial convergence among arid-dwelling lineages. Comparisons of species cranial growth trajectories between biomes revealed that allometric postdisplacement, as evidenced by decreased elevation of a constant ontogenetic slope, drives the convergent paedomorphic appearance of independent arid-dwelling forms. We hypothesize that observed heterochronic changes reflect temporal compression of ancestral life history in response to extreme environments, with associated phenotypes occurring as by-products of adaptive shifts in reproductive investment. Although allometry has long been considered a developmental constraint, our results demonstrate that allometric flexibility during early ontogeny produces convergent ecomorphologies over vast temporal and spatial scales, thus dramatically obscuring underlying phylogenetic signals.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.13186DOI Listing

Publication Analysis

Top Keywords

lizard radiation
8
cranial shape
8
developmental dynamics
4
dynamics ecomorphological
4
ecomorphological convergence
4
convergence transcontinental
4
transcontinental lizard
4
radiation phenotypic
4
phenotypic convergence
4
convergence confounded
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!