Two-Step Phase Transition in SnSe and the Origins of its High Power Factor from First Principles.

Phys Rev Lett

CESAM, QMAT, European Theoretical Spectroscopy Facility, Université de Liège, allée du 6 août, 19, B-4000 Liège, Belgium.

Published: December 2016

The interest in improving the thermoelectric response of bulk materials has received a boost after it has been recognized that layered materials, in particular SnSe, show a very large thermoelectric figure of merit. This result has received great attention while it is now possible to conceive other similar materials or experimental methods to improve this value. Before we can now think of engineering this material it is important we understand the basic mechanism that explains this unusual behavior, where very low thermal conductivity and a high thermopower result from a delicate balance between the crystal and electronic structure. In this Letter, we present a complete temperature evolution of the Seebeck coefficient as the material undergoes a soft crystal transformation and its consequences on other properties within SnSe by means of first-principles calculations. Our results are able to explain the full range of considered experimental temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.117.276601DOI Listing

Publication Analysis

Top Keywords

two-step phase
4
phase transition
4
transition snse
4
snse origins
4
origins high
4
high power
4
power factor
4
factor principles
4
principles interest
4
interest improving
4

Similar Publications

Surface Template Realizing Oriented Perovskites for Highly Efficient Solar Cells.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.

Formamidinium lead iodide (FAPbI) perovskite films, ensuring optically active phase purity with uniform crystal orientation, are ideal for photovoltaic applications. However, the optically active α-FAPbI phase is easy to degrade into δ-phase due to numerous defects within randomly oriented films. Here, a "quasi-2D" perovskite template is pre-deposited on the film surface within the crystallization process based on the two-step preparation technology, which directly induced pure and highly orientated crystallization of α-FAPbI across the downward growth process.

View Article and Find Full Text PDF

The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.

View Article and Find Full Text PDF

Background: Few studies have evaluated long-COVID in adolescents.

Methods: Cohort study. Demographics, clinical data, and the presence of 30 symptoms were collected with a modified WHO form.

View Article and Find Full Text PDF

The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .

View Article and Find Full Text PDF

Phytoglobin1 promotes Arabidopsis somatic embryogenesis through the mediation of ethylene and the ERFVII HRE2. Generation of somatic embryos in Arabidopsis (Arabidopsis thaliana) is a two-step process, encompassing an induction phase where embryogenic tissue (ET) is formed followed by a developmental phase encouraging the growth of the embryos. Using previously characterized transgenic lines dysregulating the class 1 Phytoglobin (Pgb1) we show that suppression of Pgb1 decreases somatic embryogenesis (SE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!