Arsenic Environmental Threshold Surpass in Estuarine Sediments: Effects of Bioturbation.

Bull Environ Contam Toxicol

Oceanography Institute, Federal University of Rio Grande, Av. Itália km 08 Campus Carreiros, Rio Grande, RS, 96201-900, Brazil.

Published: April 2017

We investigate the distributions of the metalloid arsenic (As) and metals iron (Fe) and manganese (Mn) in the sediments of two pristine areas of a biological reserve in the Patos Lagoon Estuary. This area is occupied by Spartina alterniflora and by Neohelice granulata crab colonies and low concentrations of As are expected. The bioturbation/bioirrigation of sediments by crabs and the roots of plants lead to the penetration of oxygen below the oxic/suboxix division and the subsequent precipitation of Fe-Mn hydroxides. Ferruginous incrustations and nodules along roots and crab channels propagate to depths of over 35 cm and sediment contains up to 33 mg kg of As. The metalloid distribution in sediments is strongly correlated with that of Fe but not with Mn. This study revealed that areas with biologically disturbed sediments could demonstrate contamination in As, which is not anthropogenic in origin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-016-2024-zDOI Listing

Publication Analysis

Top Keywords

sediments
5
arsenic environmental
4
environmental threshold
4
threshold surpass
4
surpass estuarine
4
estuarine sediments
4
sediments effects
4
effects bioturbation
4
bioturbation investigate
4
investigate distributions
4

Similar Publications

Agricultural practices, specifically the use of antibiotics and other biocides, have repercussions on human, animal and plant health. The aim of this study was to evaluate the levels of Enterobacteriaceae and Enterococcus, as antibiotic resistant marker bacteria, in various matrices across the agro-ecosystem of an antibiotic-free swine farm in Quebec (Canada), namely pig feed, feces, manure, agricultural soil, water and sediment from a crossing stream, and soil from nearby forests. Samples were collected in fall 2022, spring and fall 2023 and spring 2024.

View Article and Find Full Text PDF

This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity.

View Article and Find Full Text PDF

Environmental fate and aquatic risk assessment of oxyfluorfen in California rice fields.

Integr Environ Assess Manag

January 2025

Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, United States.

The herbicide oxyfluorfen [OXY; 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] recently emerged as a potential solution to combat herbicide resistance in California rice. Proposed as a preemergent applied preflood to soil, products are in development for use with OXY-tolerant rice strains. Currently, OXY is not registered for use with rice and its use in or near aquatic resources is restricted due to its high aquatic toxicity.

View Article and Find Full Text PDF

Marine resources are attractive for screening new useful bacteria. From a marine sediment sample, we performed isolation and screening of bacterial strains in search of new bioactive compounds. HPLC and ESI-MS analysis indicated that the new bacterium, Lysinibacillus sp.

View Article and Find Full Text PDF

Coastal water, sediment, and algae samples were collected from St. John's Island, Singapore, and enriched in either broth or agar. Metagenomic sequencing was carried out on DNA from these enrichments and analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!