Wide-gamut plasmonic color filters using a complementary design method.

Sci Rep

Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul 136-713, Republic of Korea.

Published: January 2017

Plasmonic color filters (PCFs) can acquire primary colors from non-polarized incident light through a two-dimensional arrangement of subwavelength holes. However, owing to the geometry of the 2D array, unintended secondary transmitted peaks derived from the higher-order modes of the surface plasmon resonance (SPR) lead to color cross-talk with the primary peaks. Herein, we propose a complementary design method for generating high-purity red, green, and blue (R/G/B) by combining the G/B filters of hole-arrays with the R filters of dot-arrays. Metallic dot-array filters, wherein the wavelength band under 575 nm was effectively blocked by the induction of peak broadening, operated as optical high-pass filters exhibiting pure red, and consequently widen the color gamut of PCFs by 30% without loss of luminance and color tunability. This harmonious combination promises to yield competitiveness for a next-generation color filter by enhancing the color reproducibility of plasmonic nanostructures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234004PMC
http://dx.doi.org/10.1038/srep40649DOI Listing

Publication Analysis

Top Keywords

plasmonic color
8
color filters
8
complementary design
8
design method
8
color
7
filters
6
wide-gamut plasmonic
4
filters complementary
4
method plasmonic
4
filters pcfs
4

Similar Publications

The cotton leafworm, Spodoptra littoralis, causes great damage to cotton crops. A new, safer method than insecticide is necessary for its control. Selenium nanoparticles (SeNPs) are metalloid nanomaterial, with extensive biological activities.

View Article and Find Full Text PDF

The ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n), where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InGaAsP in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency.

View Article and Find Full Text PDF
Article Synopsis
  • The aging population is leading to a significant rise in Alzheimer's disease cases, making early detection crucial.
  • Researchers developed a plasmon-enhanced fluorescence (PEF) sensor using gold nanobipyramids (Au NBPs) to visually detect amyloid-beta protein aggregation, a key marker for Alzheimer's.
  • The sensor utilizes a near-infrared fluorescent substance for a highly sensitive detection method, which allows real-time monitoring of Aβ aggregation in human neuroblastoma cells, showing potential as an effective diagnostic tool for Alzheimer's disease.
View Article and Find Full Text PDF

Effective multicolor visual biosensor for ochratoxin A detection enabled by DNAzyme catalysis and gold nanorod etching.

Mikrochim Acta

December 2024

Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.

A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.

View Article and Find Full Text PDF

The optical detection of arsenic (As) in human biological fluids and environmental water samples is presented using alpha-cyclodextrin-modified silver nanoparticles (α/CyD-AgNPs) at the trace level. This method is based on the measurement of a red shift of the LSPR band of α/CyD-AgNPs in the region of 200-800 nm. The color of α/CyD-AgNPs was changed from yellow to colorless by the addition of As(iii).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!