Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular behaviour of liquid water under proton irradiation is of great importance to a number of technological and medical applications. The highly energetic proton generates a time-varying field that is highly localized and heterogeneous at the molecular scale, and massive electronic excitations are produced as a result of the field-matter interaction. Using first-principles quantum dynamics simulations, we reveal details of how electrons are dynamically excited through non-equilibrium energy transfer from highly energetic protons in liquid water on the atto/femto-second time scale. Water molecules along the path of the energetic proton undergo ionization at individual molecular level, and the excitation primarily derives from lone pair electrons on the oxygen atom of water molecules. A reduced charge state on the energetic proton in the condensed phase of water results in the strongly suppressed electronic response when compared to water molecules in the gas phase. These molecular-level findings provide important insights into understanding the water radiolysis process under proton irradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233951 | PMC |
http://dx.doi.org/10.1038/srep40379 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!