In vivo response of AZ31 alloy as biliary stents: a 6 months evaluation in rabbits.

Sci Rep

Department of Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.

Published: January 2017

Mg-based metallic materials have been making continuing progress as vascular stents. However, the research of Mg-based materials as non-vascular stents is still at its primary stage. AZ31 stents hereby were implanted into the common bile duct of rabbits for 6 months. The results revealed an existence of 93.82 ± 1.36% and 30.89 ± 2.46% of the original volume after 1 and 3 month, respectively. Whole blood tests indicated an inflammation decreasing to normal level after 3 month implantation. A benign host response was observed via H&E staining. Nonuniform corrosion at the two ends of the stents was observed and considered the results of flow or local inflammation. Moreover, the application of Mg-based materials for different stenting treatment were reviewed and compared. Esophagus was hypothesized most destructive, whilst blood vessel and bile duct considered similar and less destructive. Trachea and nasal cavity were thought to be mildest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234016PMC
http://dx.doi.org/10.1038/srep40184DOI Listing

Publication Analysis

Top Keywords

mg-based materials
8
bile duct
8
stents
5
vivo response
4
response az31
4
az31 alloy
4
alloy biliary
4
biliary stents
4
stents months
4
months evaluation
4

Similar Publications

Biofunctionalisation of porous additively manufactured magnesium-based alloys for Orthopaedic applications: A review.

Biomater Adv

January 2025

School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; School of Pharmacy, Queen's University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, United Kingdom; Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland. Electronic address:

Magnesium (Mg) alloys have gained significant attention as a desirable choice of biodegradable implant for use in bone repair applications, largely owing to their unique material properties. More recently, Mg and Mg-based alloys have been used as load-bearing metallic scaffolds for bone tissue engineering applications, offering promising opportunities in the field. The mechanical properties and relative density of Mg-based alloys closely approximate those of natural human bone tissue, thereby mitigating the risk of stress-shielding effects.

View Article and Find Full Text PDF

Due to limited slip systems activated at room temperature, the plastic deformation of Mg and its alloys without any preheating of initial billets is significantly limited. To overcome those issues, new methods of severe plastic deformation are discovered and developed. One such example is extrusion with an oscillating die, called KoBo.

View Article and Find Full Text PDF

Overview of porous magnesium-based scaffolds: development, properties and biomedical applications.

Mater Futur

March 2025

Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

Magnesium (Mg) and its alloys are revolutionizing the field of interventional surgeries in the medical industry. Their high biocompatibility, biodegradability, and a similar elastic modulus to natural bone make porous Mg-based structures potential candidates for orthopedic implants and tissue engineering scaffolding. However, fabricating and machining porous Mg-based structures is challenging due to their complexity and difficulties in achieving uniform or gradient porosity.

View Article and Find Full Text PDF

Superbugs in groundwater are posing severe health risks through waterborne pathways. An emerging approach for green disinfection lies at photocatalysis, which levers the locally generated superoxide radical (·O) for neutralization. However, the spin-forbidden feature of O hinders the photocatalytic generation of active ·O, and thus greatly limited the disinfection efficiency, especially for real groundwater with a low dissolved oxygen (DO) concentration.

View Article and Find Full Text PDF

Surface Doping to Suppress Iodine Ion Migration for Stable FAPbI Perovskite Quantum Dot Solar Cells.

Small

December 2024

Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.

Formamidine lead iodide (FAPbI) quantum dots (QDs) have attracted great attention as a new generation of photovoltaic material due to their long carrier diffusion length, benign ambient stability, and light-harvesting ability. However, its large surface area with inherent thermodynamic instability and highly defective ionic termination are still major obstacles to fabricating high-performance devices. Herein, a metallic ion dopant is developed to post-treat FAPbI QDs immediately after their fabrication by using a metal-glutamate salt solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!