Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.

Environ Sci Technol

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, United States.

Published: February 2017

The partition coefficient of solutes into the polyamide active layer of reverse osmosis (RO) membranes is one of the three membrane properties (together with solute diffusion coefficient and active layer thickness) that determine solute permeation. However, no well-established method exists to measure solute partition coefficients into polyamide active layers. Further, the few studies that measured partition coefficients for inorganic salts report values significantly higher than one (∼3-8), which is contrary to expectations from Donnan theory and the observed high rejection of salts. As such, we developed a benchtop method to determine solute partition coefficients into the polyamide active layers of RO membranes. The method uses a quartz crystal microbalance (QCM) to measure the change in the mass of the active layer caused by the uptake of the partitioned solutes. The method was evaluated using several inorganic salts (alkali metal salts of chloride) and a weak acid of common concern in water desalination (boric acid). All partition coefficients were found to be lower than 1, in general agreement with expectations from Donnan theory. Results reported in this study advance the fundamental understanding of contaminant transport through RO membranes, and can be used in future studies to decouple the contributions of contaminant partitioning and diffusion to contaminant permeation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b04323DOI Listing

Publication Analysis

Top Keywords

polyamide active
16
partition coefficients
16
active layers
12
active layer
12
alkali metal
8
metal salts
8
boric acid
8
reverse osmosis
8
osmosis membranes
8
determine solute
8

Similar Publications

This study explored the batch membrane filtration of 40% ethanol extracts from spent lavender, containing valuable compounds like rosmarinic acid, caffeic acid, and luteolin, using a polyamide-urea thin film composite X201 membrane. Conducted at room temperature and 20 bar transmembrane pressure, the process demonstrated high efficiency, with rejection rates exceeding 98% for global antioxidant activity and 93-100% for absolute concentrations of the target components. During concentration, the permeate flux declined from 2.

View Article and Find Full Text PDF

The starting point for the preparation of polymeric membranes by phase inversion is having a thermodynamically stable solution. Ternary diagrams for the polymer, solvent, and non-solvent can predict this stability by identifying the phase separation and describing the thermodynamic behavior of the membrane formation process. Given the lack of data for the ternary system water (HO)/hydrochloric acid (HCℓ)/polyamide 66 (PA66), this work employed the Flory-Huggins theory for the construction of the ternary diagrams (HO/HCℓ/PA66 and HO/formic acid (FA)/PA66) by comparing the experimental data with theoretical predictions.

View Article and Find Full Text PDF

Marine litter and microplastics (MPs) represent pressing environmental challenges. However, the impact of marine litter on airborne MPs near marine litter hotspot remains unexplored. In this study, we simultaneously collected airborne MPs, weather factors, and air pollutants in a village near a marine litter hotspot across different seasons in Taiwan.

View Article and Find Full Text PDF

Polyamide (PA) has notable physical and chemical properties and is one of the most versatile synthetic materials in the industrial sector. However, its hydrophobicity creates significant challenges in its beneficiation and modification. Modifications of PA with chitosan nanoparticles (CNPs) can improve its undesired properties but are rarely found in the literature due to the weak interaction between the chemical groups of both structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!