Ion-conducting memristors comprised of the layered materials GeSe/SnSe/Ag are promising candidates for neuromorphic computing applications. Here, the spike-timing dependent plasticity (STDP) application is demonstrated for the first time with a single memristor type operating as a synapse over a timescale of 10 orders of magnitude, from nanoseconds through seconds. This large dynamic range allows the memristors to be useful in applications that require slow biological times, as well as fast times such as needed in neuromorphic computing, thus allowing multiple functions in one design for one memristor type-a "one size fits all" approach. This work also investigated the effects of varying the spike pulse shapes on the STDP response of the memristors. These results showed that small changes in the pre- and postsynaptic pulse shape can have a significant impact on the STDP. These results may provide circuit designers with insights into how pulse shape affects the actual memristor STDP response and aid them in the design of neuromorphic circuits and systems that can take advantage of certain features in the memristor STDP response that are programmable the pre- and postsynaptic pulse shapes. In addition, the energy requirement per memristor is approximated based on the pulse shape and timing responses. The energy requirement estimated per memristor operating on slower biological timescales (milliseconds to seconds) is larger (nanojoules range), as expected, than the faster (nanoseconds) operating times (~0.1 pJ in some cases). Lastly, the memristors responded in a similar manner under normal STDP conditions (pre- and post-spikes applied to opposite memristor terminals) as they did to the case where a waveform corresponding to the difference between pre- and post-spikes was applied to only one electrode, with the other electrode held at ground potential. By applying the difference signal to only one terminal, testing of the memristor in various applications can be achieved with a simplified test set-up, and thus be easier to accomplish in most laboratories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5183647 | PMC |
http://dx.doi.org/10.3389/fbioe.2016.00097 | DOI Listing |
Sci Rep
December 2024
State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China.
Microbubble-facilitated sonoporation is a rapid, versatile, and non-viral intracellular delivery technique with potential for clinical and ex vivo cell engineering applications. We developed a micropatterning-based approach to investigate the impact of cell shape on sonoporation efficacy. Cationic microbubbles were employed to enhance sonoporation by binding to the cell membrane electrostatically.
View Article and Find Full Text PDFSci Rep
December 2024
Mathematics, KU Leuven, Celestijnenlaan 200B, Leuven, Belgium.
The formation of a S-shaped filament was investigated to determine if and how magnetoacoustic waves in the solar corona can trigger filament excitation. The study investigated how magnetoacoustic waves interact with two magnetic null points in the solar corona. Since the solar corona has a complex magnetic field structure, it is expected that magnetic structures are predominantly responsible for the occurrence of coronal events.
View Article and Find Full Text PDFVet Sci
December 2024
Department of Small Mammal, Reptile and Avian Medicine and Surgery, University of Veterinary Medicine Hannover, Bünteweg 9, 30559 Hanover, Germany.
There is scant information available about the blood flow of the pulmonary artery in avian cardiology. In human medicine, the shape of the Doppler sonographic blood flow profile of the pulmonary artery can be used to access the pressure conditions of the right heart. With this background, this study focused on the examination of the acceleration and deceleration phase of the pulsed-wave Doppler flow profile of the pulmonary artery of healthy racing pigeons.
View Article and Find Full Text PDFAnn Ital Chir
December 2024
Department of Cardiovascular Surgery, Shaoxing People's Hospital, 312000 Shaoxing, Zhejiang, China.
J Acoust Soc Am
December 2024
Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
Investigation of sound pressure waveforms helps the selection of appropriate metrics to evaluate their effects on marine life in relation to noise thresholds. As marine animals move farther away from a sound source, the temporal characteristics of sound pressure may be influenced by interactions with the sediment and the sea surface. Sound pressure kurtosis and root-mean-square (rms) sound pressure are quantitative characteristics that depend on the shape of a sound pulse, with kurtosis related to the qualitative characteristic "impulsiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!