Although the transfer of wild animals to captivity is crucial for conservation purposes, this process is often challenging because some species or individuals do not adjust well to captive conditions. Chronic stress has been identified as a major concern for animals held on long-term captivity. Surprisingly, the first hours or days of captivity have been relatively overlooked. However, they are certainly very stressful, because individuals are being transferred to a totally novel and confined environment. To ensure the success of conservation programmes, it appears crucial to better understand the proximate causes of interspecific and interindividual variability in the sensitivity to these first hours of captivity. In that respect, the study of stress hormones is relevant, because the hormonal stress response may help to assess whether specific individuals or species adjust, or not, to such captive conditions ('the stress response-adjustment to captivity hypothesis'). We tested this hypothesis in rock pigeons by measuring their corticosterone stress response and their ability to adjust to short-term captivity (body mass loss and circulating corticosterone levels after a day of captivity). We showed that an increased corticosterone stress response is associated with a lower ability to adjust to short-term captivity (i.e. higher body mass loss and circulating corticosterone levels). Our study suggests, therefore, that a low physiological sensitivity to stress may be beneficial for adjusting to captivity. Future studies should now explore whether the stress response can be useful to predict the ability of individuals from different populations or species to not only adjust to short-term but also long-term captivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210699PMC
http://dx.doi.org/10.1098/rsos.160840DOI Listing

Publication Analysis

Top Keywords

stress response
20
adjust short-term
16
captivity
10
stress
9
response predict
8
predict ability
8
captive conditions
8
long-term captivity
8
species adjust
8
corticosterone stress
8

Similar Publications

The increasing cultivation of perennial C4 grass known as Miscanthus spp. for biomass production holds promise as a sustainable source of renewable energy. Unlike the sterile triploid hybrid of M.

View Article and Find Full Text PDF

Nosé-Hoover Integrators at-a-Glance: Barostat Integration Has a Demonstrable Effect on Uniaxial Tension Results of Solid Materials.

J Chem Theory Comput

January 2025

Mechanical and Industrial Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States.

Molecular dynamics is a popular method for evaluating the tensile stress behaviors of many nanomaterials; however, few manuscripts include their thermostat and barostat damping parameters along with their methods. Here, we illustrate the demonstrable effect that barostat integration has on system dynamics during uniaxial testing under a Nosé-Hoover scheme. Three systems are tested: a 2D graphene sheet, a 3D continuous aluminum volume, and a 3D discontinuous polyvinyl alcohol volume.

View Article and Find Full Text PDF

Nurse sharks (Ginglymostoma cirratum), especially juveniles, are often encountered by near-shore and shore-based recreational anglers and are suggested to exhibit minimal behavioral and physiological responses to capture, largely based on studies of adults using commercial or scientific fishing methods. To quantify the sub-lethal effects of recreational angling on juvenile nurse sharks, 27 individuals (across 31 angling events) were caught using hook-and-line fishing methods. Over a 30-min period, 4 blood samples were taken with variable time intervals between sampling (i.

View Article and Find Full Text PDF

RpH-ILV: Probe for lysosomal pH and acute LLOMe-induced membrane permeabilization in cell lines and .

Sci Adv

January 2025

Department of Biochemistry Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.

Lysosomal pH dysregulation is a critical element of the pathophysiology of neurodegenerative diseases, cancers, and lysosomal storage disorders (LSDs). To study the role of lysosomes in pathophysiology, probes to analyze lysosomal size, positioning, and pH are indispensable tools. Here, we developed and characterized a ratiometric genetically encoded lysosomal pH probe, RpH-ILV, targeted to a subpopulation of lysosomal intraluminal vesicles.

View Article and Find Full Text PDF

Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!