Sepsis is a major cause of death for hospitalized patients and is characterized by massive overreaction of immune responses to invading pathogens which is mediated by cytokines. For decades, there has been no effective treatment for sepsis. Sialic acid-binding, Ig-like lectin-9 (Siglec-9), is an immunomodulatory receptor expressed primarily on hematopoietic cells which is involved in various aspects of inflammatory responses and is a potential target for treatment of sepsis. The aim of the present study was to develop a human anti-Siglec-9 Fab fragment, which was named hS9-Fab03 and investigate its immune activity in human macrophages. We began by constructing the hS9-Fab03 prokaryotic expression vector from human antibody library and phage display. Then, we utilized a multitude of assays, including SDS-PAGE, Western blotting, ELISA, affinity, and kinetics assay to evaluate the binding affinity and specificity of hS9-Fab03. Results demonstrated that hS9-Fab03 specifically bind to Siglec-9 antigen with high affinity, and pretreatment with hS9-Fab03 could attenuate lipopolysaccharide (LPS)-induced TNF-α, IL-6, IL-1β, IL-8, and IFN-β production in human PBMC-derived macrophages, but slightly increased IL-10 production in an early time point. We also observed similar results in human THP-1-differentiated macrophages. Collectively, we prepared the hS9-Fab03 with efficient activity for blocking LPS-induced pro-inflammatory cytokines production in human macrophages. These results indicated that ligation of Siglec-9 with hS9-Fab03 might be a novel anti-inflammatory therapeutic strategy for sepsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5183739 | PMC |
http://dx.doi.org/10.3389/fimmu.2016.00649 | DOI Listing |
In Vivo
December 2024
Department of Gynecology and Gynecological Oncology, Research Laboratories, University Hospital Bonn, Bonn, Germany
The human bowel is exposed to numerous biotic and abiotic external noxious agents. Accordingly, the digestive tract is frequently involved in malfunctions within the organism. Together with the commensal intestinal flora, it regulates the immunological balance between inflammatory defense processes and immune tolerance.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
Gliomas are the most prevalent form of primary brain tumours. Recently, targeting the PD-1 pathway with immunotherapies has shown promise as a novel glioma treatment. However, not all patients experience long-lasting benefits, underscoring the necessity to discover reliable biomarkers for predicting treatment outcomes.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
Background: Metastatic colorectal cancer (mCRC) is the main cause of CRC mortality, with limited treatment options. Although immunotherapy has benefited some cancer patients, mCRC typically lacks the molecular features that respond to this treatment. However, recent studies indicate that the immune microenvironment of mCRC may be modified to enhance the effect of immune checkpoint inhibitors.
View Article and Find Full Text PDFPLoS One
December 2024
Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, Republic of Korea.
Th2 inflammation and epithelial-mesenchymal transition (EMT) play crucial roles in the pathophysiology of chronic rhinosinusitis with nasal polyps (CRSwNP). This study aimed to investigate the hypothesis that MMP-12, produced by M2 macrophages, induces EMT in nasal epithelial cells, thereby contributing to airway inflammation and remodeling in CRSwNP. The expression levels of MMP-12 were measured by RT-PCR in CRS nasal mucosa and THP-1 cells.
View Article and Find Full Text PDFCardiovasc Res
December 2024
Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
Oxidation of lipids, excessive cell death and iron deposition are prominent features of human atherosclerotic plaques. While extensive research has established the detrimental roles of lipid oxidation and apoptosis in atherosclerosis development, the involvement of iron in atherogenesis is not yet fully understood. With the emergence of an iron-dependent form of cell death termed ferroptosis, new attention has been brought to the complex interplay among iron, ferroptosis and atherosclerosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!