Human influenza pandemics have historically been caused by reassortant influenza A viruses using genes from human and avian viruses. This genetic reassortment between human and avian viruses has been known to occur in swine during viral circulation, as swine are capable of circulating both avian and human viruses. Therefore, avian-to-swine transmission of viruses plays an important role in the emergence of new pandemic strains. The amino acids at several positions on PB2, PB1, and PA are known to determine the host range of influenza A viruses. In this paper, we track viral transmission between avian and swine to investigate the evolution on polymerase genes associated with their hosts. We traced viral transmissions between avian and swine hosts by using nucleotide sequences of avian viruses and swine viruses registered in the NCBI GenBank. Using BLAST and the reciprocal best hits technique, we found 32, 33, and 30 pairs of avian and swine nucleotide sequences that may be associated with avian-to-swine transmissions for PB2, PB1, and PA genes, respectively. Then, we examined the amino acid substitutions involved in these sporadic transmissions. On average, avian-to-swine transmission pairs had 5.47, 3.73, and 5.13 amino acid substitutions on PB2, PB1, and PA, respectively. However, amino acid substitutions were distributed over the positions, and few positions showed common substitutions in the multiple transmission events. Statistical tests on the number of repeated amino acid substitutions suggested that no specific positions on PB2 and PA may be required for avian viruses to infect swine. We also found that avian viruses that transmitted to swine tend to process I478V substitutions on PB2 before interspecies transmission events. Furthermore, most mutations occurred after the interspecies transmissions, possibly due to selective viral adaptation to swine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5183616 | PMC |
http://dx.doi.org/10.3389/fmicb.2016.02118 | DOI Listing |
Cell
January 2025
Beijing Life Science Academy, Beijing 102200, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China. Electronic address:
The ongoing circulation of highly pathogenic avian influenza (HPAI) A (H5N1) viruses, particularly clade 2.3.4.
View Article and Find Full Text PDFVirol Sin
January 2025
Zhejiang Provincial Center for Animal Disease Control and Prevention, Hangzhou 311199, China. Electronic address:
Vet Microbiol
January 2025
Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture of China (26116120), College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
Currently, there is increasing spillover of highly pathogenic H5N1 avian influenza virus (AIV) to mammals, raising a concern of pandemic threat about this virus. Although the function of PA protein of the influenza virus is well understood, the understanding of how phosphorylation regulates this protein and influenza viral life cycle is still limited. We previously identified PA S225 as the phosphorylation site in the highly pathogenic H5N1 AIV.
View Article and Find Full Text PDFJ Insect Sci
January 2025
Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
Unraveling the numerous factors that drive phenotypic variation in trait expression among animals has long presented a significant challenge. Whereas traits like growth and adult size are often heritable and are passed on from one generation to the next, these can be significantly affected by the quality and quantity of resources provided by one or both parents to their offspring. In many vertebrates, such as birds and mammals, parents raise their young until adult, providing food, shelter, and protection.
View Article and Find Full Text PDFAntibodies (Basel)
January 2025
Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
Recent avian influenza outbreaks have heightened global concern over viral threats with the potential to significantly impact human health. Influenza is particularly alarming due to its history of causing pandemics and zoonotic reservoirs. In response, significant progress has been made toward the development of universal influenza vaccines, largely driven by the discovery of broadly neutralising antibodies (bnAbs), which have the potential to neutralise a broad range of influenza viruses, extending beyond the traditional strain-specific response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!