Calliphorid species form larval aggregations that are capable of generating heat above ambient temperature. We wanted to determine the relationship between volume, number of larvae, and different combinations of instars on larval mass heat generation. We compared different numbers of Chrysomya megacephala (F.) larvae (40, 100, 250, 600, and 2,000), and different combinations of instars (∼50/50 first and second instars, 100% second instars, ∼50/50 second and third instars, and 100% third instars) at two different ambient temperatures (20 and 30 °C). We compared 13 candidate multiple regression models that were fitted to the data; the models were then scored and ranked with Akaike information criterion and Bayesian information criterion. The results indicate that although instar, age, treatment temperature, elapsed time, and number of larvae in a mass were significant, larval volume was the best predictor of larval mass temperatures. The volume of a larval mass may need to be taken into consideration for determination of a postmortem interval.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jme/tjw139DOI Listing

Publication Analysis

Top Keywords

larval mass
12
mass temperatures
8
chrysomya megacephala
8
number larvae
8
combinations instars
8
second instars
8
instars 100%
8
third instars
8
instars
6
mass
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!