Mandibular first molars from 17-d-old mouse embryos were cultured in vitro for 2 to 4 d by a simple, disposable, improved floatation method. This method consisted of using a 24-well multidish and a plastic culture chamber with a membrane filter. The improved floatation method, as well as our previous method, was capable of the three-dimensional development of tooth germs. Cytodifferentiation of odontoblasts and ameloblasts and formation of extracellular matrices were accelerated by the present culture system, in comparison with our previous method. All the molars cultivated by this method were very similar in morphology to in vivo. On Day 2 of culture the terminal cytodifferentiation of odontoblasts and the formation of predentin were ascertained in the bucco-lingual sections of the cultured molars. A thick layer of predentin was formed at the tip of the cusp and gradually decreased toward the cervical loop and the fissure between the buccal and lingual cusps. On Day 4 in vitro, secretory ameloblasts produced enamel matrix, and the mineralized enamel showed showed prismatic structure very similar to that in vivo. Dentin and predentin also were normal in ultrastructure. The extracellular matrices (enamel, dentine, and predentin) were formed in line with the pattern of the cusp and the formation of matrices normally started at the tip of the cusp. We conclude that the three-dimensional development of whole tooth germs in vitro may be very important for normal expression of the developmental program intrinsic to mouse embryonic molars.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02624010DOI Listing

Publication Analysis

Top Keywords

three-dimensional development
12
simple disposable
8
disposable improved
8
culture system
8
mouse embryonic
8
embryonic molars
8
improved floatation
8
floatation method
8
previous method
8
development tooth
8

Similar Publications

Objectives: This study aimed to develop an automated method for generating clearer, well-aligned panoramic views by creating an optimized three-dimensional (3D) reconstruction zone centered on the teeth. The approach focused on achieving high contrast and clarity in key dental features, including tooth roots, morphology, and periapical lesions, by applying a 3D U-Net deep learning model to generate an arch surface and align the panoramic view.

Methods: This retrospective study analyzed anonymized cone-beam CT (CBCT) scans from 312 patients (mean age 40 years; range 10-78; 41.

View Article and Find Full Text PDF

Air-liquid interface culture combined with differentiation factors reproducing intestinal cell structure formation in vitro.

Biol Open

January 2025

Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.

Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells.

View Article and Find Full Text PDF

Glucocorticoids Alter Bone Microvascular Barrier via MAPK/Connexin43 Mechanisms.

Adv Healthc Mater

January 2025

Department of Biochemistry and Molecular and Cellular Biology, School of Medicine, Georgetown University, Washington, DC, 20057, USA.

Glucocorticoids (GCs) are standard-of-care treatments for inflammatory and immune disorders, and their long-term use increases the risk of osteoporosis. Although GCs decrease bone functionality, their role in bone microvasculature is incompletely understood. Herein, the study investigates the mechanisms of bone microvascular barrier function via osteoblast-endothelial interactions in response to GCs.

View Article and Find Full Text PDF

Purpose: Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D) whole-body imaging of nitroxide-infused mice.

Methods: A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging.

View Article and Find Full Text PDF

This study investigates the structure-property relationships of a series of phenylhydrazones bearing various electron-donating and electron-withdrawing substituents, such as methoxy, dimethylamino, morpholinyl, hydroxyl, chloro, bromo, and nitro groups. The compounds were synthesized, and their structures were characterized using single-crystal X-ray diffraction, powder X-ray diffraction, FTIR spectroscopy, NMR spectroscopy, and DSC. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and UV-Vis spectroscopy were employed to elucidate the complex interplay between the molecular skeleton, substituents, and the resulting photophysical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!