We examined the impact of arbuscular mycorrhizal fungi and rhizobia on the living microbial community and microbial necromass under different long-term fertilization treatments at the long-term Static Fertilization Experiment Bad Lauchstädt (Germany). Phospholipid fatty acids (PLFA) and amino sugars plus muramic acid, were used as biomarkers for soil microbial bio- and necromass, respectively, and analyzed from six treatments imposed on two crop rotations, varying only in the inclusion/non-inclusion of a legume. Treatments included: two levels of only farmyard manure (FYM), only mineral fertilizer (NPK), the combined application of both fertilizer types and a non-fertilized control. PLFA profiles differed clearly between the investigated crop rotations and were significantly related to labile C, mineral N, and soil pH. This emphasizes the role of carbon, and of mycorrhizal and rhizobial symbioses, as driver for changes in the microbial community composition due to effects on the living conditions in soil. We found some evidence that legume associated symbiosis with arbuscular mycorrhizal fungi and rhizobia act as a buffer, reducing the impact of varying inputs of mineral nutrients on the decomposer community. While our results support former findings that living microbial populations vary within short-term periods and are reflective of a given crop grown in a given year, soil necromass composition indicates longer term changes across the two crop rotation types, mainly shaped by fertilizer related effects on the community composition and C turnover. However, there was some evidence that specifically the presence of a legume, affects the soil necromass composition not only over the whole crop rotation but even in the short-term.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.01.005 | DOI Listing |
Front Plant Sci
January 2025
Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
Excessive utilization of chemical fertilizers degrades the quality of medicinal plants and soil. Bio-organic fertilizers (BOFs) including microbial inoculants and microalgae have garnered considerable attention as potential substitutes for chemical fertilizer to enhance yield. In this study, a field experiment was conducted to investigate the effects of BOF partially substituting chemical fertilizer on the growth and quality of medicinal plant .
View Article and Find Full Text PDFBMJ Oncol
November 2023
Rowett Institute, University of Aberdeen, Aberdeen, UK.
Cancer remains one of the leading causes of death worldwide, despite advances in treatments such as surgery, chemotherapy, radiotherapy and immunotherapy. The role of the gut microbiota in human health and disease, particularly in relation to cancer incidence and treatment response, has gained increasing attention. Emerging evidence suggests that dietary fibre, including prebiotics, can modulate the gut microbiota and influence antitumour effects.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
The Biomedical Research Institute of Malaga and Platform in Nanomedicine (IBIMA BIONAND Platform), Málaga, Spain.
Background: Difficult-to-treat rheumatoid arthritis (D2T RA) refers to a subset of patients who fail to achieve adequate disease control after the use of two or more biological or targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) with different mechanisms of action, while maintaining active inflammatory disease. This presents a therapeutic challenge and highlights the need to explore contributing factors such as the potential role of the gut microbiota. Therefore, the aim of this study was to analyze the gut microbiota and inflammation in patients with D2T RA in comparison to patients with easy-to-treat RA (E2T RA).
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy, Applied Science Private University, Amman, 11937, Jordan.
Introduction: The beneficial effects of probiotics are encountered by their low viability in gastrointestinal conditions and their insufficient stability during manufacturing, throughut the gastrointestinal transit, and storage. Therefore, novel systems are highly required to improve probiotics delivery.
Methods: In this study, Lactobacillus gasseri (L), Bifidobacterium bifidum (B), and a combination of L+B were encapsulated in chitosan (CS)-polyacrylic acid (PAA) complex systems (CS-PAA).
Front Microbiol
January 2025
Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China.
Background: Serovar Typhimurium (. Typhimurium) infection can cause inflammation and oxidative stress in the body, leading to gastroenteritis, fever and other diseases in humans and animals. More and more studies have emphasized the broad prospects of probiotics in improving inflammation and oxidative stress, but the ability and mechanism of (LA) to alleviate the inflammatory/oxidative reaction caused by pathogens are still unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!