Background: Vaccination offers protection against influenza, although current vaccines need to be reformulated each year. The development of a broadly protective influenza vaccine would guarantee the induction of heterosubtypic immunity also against emerging influenza viruses of a novel subtype. Vaccine candidates based on the stalk region of the hemagglutinin (HA) have the potential to induce broad and persistent protection against diverse influenza A viruses.
Methods: Modified vaccinia virus Ankara (MVA) expressing a headless HA (hlHA) of A/California/4/09 (CA/09) virus was used as a vaccine to immunize C57BL/6 mice. Specific antibody and cell-mediated immune responses were determined, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus.
Results: Immunization of mice with CA/09-derived hlHA, vectored by MVA, was able to elicit influenza-specific broad cross-reactive antibodies and cell-mediated immune responses, but failed to induce neutralizing antibodies and did not protect mice against virus challenge.
Conclusion: Although highly immunogenic, our vaccine was unable to induce a protective immunity against influenza. A misfolded and unstable conformation of the hlHA molecule may have affected its capacity of inducing neutralizing antiviral, conformational antibodies. Design of stable hlHA-based immunogens and their delivery by recombinant MVA-based vectors has the potential of improving this promising approach for a universal influenza vaccine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375617 | PMC |
http://dx.doi.org/10.1080/20477724.2016.1275464 | DOI Listing |
JYNNEOS, a third-generation smallpox vaccine, is integral to monkeypox virus (MPXV) control efforts, but the durability of this modified vaccinia Ankara-Bavarian Nordic (MVA-BN) vaccine's effectiveness is undefined. We optimized and used a plaque reduction neutralization test (PRNT) with authentic clade IIa MPXV and vaccinia virus to assess antibody responses over 12 months in 8 donors vaccinated with 2 doses of JYNNEOS. One donor previously received the ACAM2000 vaccine; 7 donors were smallpox vaccine-naive.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
ProBioGen AG, 13086 Berlin, Germany.
: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs).
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
Background/objectives: Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and confirmed human cases outside Africa are, so far, exclusively imported by returning travelers. Over the previous years, MARV has also spread to non-endemic African countries, demonstrating its potential to cause epidemics.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Introduction: Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity.
View Article and Find Full Text PDFJ Med Virol
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
Oncolytic viruses are emerging as promising cancer therapeutic agents, with several poxviruses, including vaccinia virus (VACV) and myxoma virus, showing significant potential in preclinical and clinical trials. Modified vaccinia virus Ankara (MVA), a laboratory-derived VACV strain approved by the FDA for mpox and smallpox vaccination, has been shown to be incapable of replicating in human cells unless zinc finger antiviral protein (ZAP) is repressed. Notably, ZAP deficiency is prevalent in various cancer types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!