Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233422PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169950PLOS

Publication Analysis

Top Keywords

phytophthora resistance
20
rps genes
16
phytophthora sojae
12
gene mapped
12
resistance
9
phytophthora
9
sojae resistance
8
gene
8
genomic region
8
novel rps
8

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by , and . The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives.

View Article and Find Full Text PDF

Identification and Functional Analysis of the Gene Conferring Resistance to Late Blight () in Tomato.

Plants (Basel)

December 2024

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene confers resistance against the race T of in tomatoes.

View Article and Find Full Text PDF

Genome-Wide Association Study for Resistance to in Soybean [ (L.) Merr.].

Plants (Basel)

December 2024

Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.

(Kauffman and Gerdemann) is an oomycete pathogen that threatens soybean ( L.) production worldwide. The development of soybean cultivars with resistance to this pathogen is of paramount importance for the sustainable management of the disease.

View Article and Find Full Text PDF

Late blight, caused by , is a devastating disease of potato. Our previous work illustrated that scopolamine, the main bioactive substance of extract, exerts direct inhibitory effects on , but it is unclear whether scopolamine and extract can boost resistance to late blight in potato. In this study, .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!