Inhibition of Acetyl-CoA Carboxylase 1 (ACC1) and 2 (ACC2) Reduces Proliferation and De Novo Lipogenesis of EGFRvIII Human Glioblastoma Cells.

PLoS One

Cardiovascular, Metabolic, and Endocrine Diseases (CVMED) Research Unit, Pfizer Inc, Cambridge, Massachusetts, United States of America.

Published: August 2017

Tumor cell proliferation and migration processes are regulated by multiple metabolic pathways including glycolysis and de novo lipogenesis. Since acetyl-CoA carboxylase (ACC) is at the junction of lipids synthesis and oxidative metabolic pathways, we investigated whether use of a dual ACC inhibitor would provide a potential therapy against certain lipogenic cancers. The impact of dual ACC1/ACC2 inhibition was investigated using a dual ACC1/ACC2 inhibitor as well as dual siRNA knock down on the cellular viability and metabolism of two glioblastoma multiform cancer cell lines, U87 and a more aggressive form, U87 EGFRvIII. We first demonstrated that while ACCi inhibited DNL in both cell lines, ACCi preferentially blunted the U87 EGFRvIII cellular proliferation capacity. Metabolically, chronic treatment with ACCi significantly upregulated U87 EGFRvIII cellular respiration and extracellular acidification rate, a marker of glycolytic activity, but impaired mitochondrial health by reducing maximal respiration and decreasing mitochondrial ATP production efficiency. Moreover, ACCi treatment altered the cellular lipids content and increased apoptotic caspase activity in U87 EGFRvIII cells. Collectively these data indicate that ACC inhibition, by reducing DNL and increasing cellular metabolic rate, may have therapeutic utility for the suppression of lipogenic tumor growth and warrants further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231342PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169566PLOS

Publication Analysis

Top Keywords

u87 egfrviii
16
acetyl-coa carboxylase
8
novo lipogenesis
8
metabolic pathways
8
investigated dual
8
dual acc1/acc2
8
cell lines
8
egfrviii cellular
8
egfrviii
5
cellular
5

Similar Publications

Discovery of novel Macrocyclic small molecules Based on 2-Amino-4-thiazolylpyridineas selective EGFR inhibitors with high Blood-Brain barrier penetration for the treatment of glioblastoma.

Bioorg Chem

December 2024

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 China. Electronic address:

Because epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene in glioblastoma (GBM), the development of EGFR inhibitors has become a promising direction for the treatment of GBM. However, due to factors such as limited blood-brain barrier (BBB) permeability and pathway compensation mechanisms, current EGFR inhibitors targeting GBM are not satisfactory. In the previous study, we obtained compound 10c with strong anti-cell proliferation activity.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most prevalent and advanced malignant primary brain tumor in adults. GBM frequently harbors epidermal growth factor receptor (EGFR) wild-type () gene amplification and/or activating mutation. EGFR-driven GBM relies on the thioredoxin (Trx) and/or glutathione (GSH) antioxidant systems to withstand the excessive production of reactive oxygen species (ROS).

View Article and Find Full Text PDF

In Vivo Evaluation of Ga-Labeled NOTA-EGFRvIII Aptamer in EGFRvIII-Positive Glioblastoma Xenografted Model.

Pharmaceutics

June 2024

Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

EGFRvIII is expressed only in tumor cells and strongly in glioblastoma and is considered a promising target in cancer diagnosis and therapy. Aptamers are synthetic single-stranded oligonucleotides that bind to biochemical target molecules with high binding affinity and specificity. This study examined the potential of the Ga-NOTA-EGFRvIII aptamer as a nuclear imaging probe for visualizing EGFRvIII-expressing glioblastoma by positron emission tomography (PET).

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and malignant primary brain tumor affecting adults and remains incurable. The mitochondrial coiled‑coil‑helix‑coiled‑coil‑helix domain‑containing protein 2 (CHCHD2) has been demonstrated to mediate mitochondrial respiration, nuclear gene expression and cell migration; however, evidence of this in GBM is lacking. In the present study, it was hypothesized that CHCHD2 may play a functional role in U87 GBM cells expressing the constitutively active epidermal growth factor receptor variant III (EGFRvIII).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!