The ability to adapt to adverse conditions permits many bacterial species to be virtually ubiquitous and survive in a variety of ecological niches. This ability is of particular importance for many plant pathogenic bacteria that should be able to exist, except for their host plants, in different environments e.g. soil, water, insect-vectors etc. Under some of these conditions, bacteria encounter absence of nutrients and persist, acquiring new properties related to resistance to a variety of stress factors (cross-protection). Although many studies describe the phenomenon of cross-protection and several regulatory components that induce the formation of resistant cells were elucidated, the global comparison of the physiology of cross-protected phenotype and growing cells has not been performed. In our study, we took advantage of RNA-Seq technology to gain better insights into the physiology of cross-protected cells on the example of a harmful phytopathogen, Pectobacterium atrosepticum (Pba) that causes crop losses all over the world. The success of this bacterium in plant colonization is related to both its virulence potential and ability to persist effectively under various stress conditions (including nutrient deprivation) retaining the ability to infect plants afterwards. In our previous studies, we showed Pba to be advanced in applying different adaptive strategies that led to manifestation of cell resistance to multiple stress factors. In the present study, we determined the period necessary for the formation of cross-protected Pba phenotype under starvation conditions, and compare the transcriptome profiles of non-adapted growing cells and of adapted cells after the cross-protective effect has reached the maximal level. The obtained data were verified using qRT-PCR. Genes that were expressed differentially (DEGs) in two cell types were classified into functional groups and categories using different approaches. As a result, we portrayed physiological features that distinguish cross-protected phenotype from the growing cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5230779 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169536 | PLOS |
Virus Genes
April 2022
National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, 369 Nanjing Rd, Qingdao, 266032, Shandong, China.
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF). The virus causes an acute highly hemorrhagic disease in domestic pigs, with high mortality. Although the overall genome mutation rate of ASFV, a large DNA virus, is relatively low, ASFV exhibits genetic and antigenic diversity.
View Article and Find Full Text PDFPLoS One
August 2017
Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.
The ability to adapt to adverse conditions permits many bacterial species to be virtually ubiquitous and survive in a variety of ecological niches. This ability is of particular importance for many plant pathogenic bacteria that should be able to exist, except for their host plants, in different environments e.g.
View Article and Find Full Text PDFPlant Sci
November 2016
Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; Istituto del CNR per la Protezione sostenibile delle Piante, Unità Operativa di Supporto di Bari, Via Amendola 165/A, 70126 Bari, Italy. Electronic address:
Metagenomic surveys and data from next generation sequencing revealed that mixed infections among plant viruses are probably a rule rather than an exception in natural pathosystems. The documented cases may range from synergism to antagonism, which may depend from the spatiotemporal order of arrival of the viruses on the host and upon the host itself. In synergistic interactions, the measurable differences in replication, phenotypic and cytopathological changes, cellular tropism, within host movement, and transmission rate of one of the two viruses or both are increased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!