Metal meshes have emerged as an important class of flexible transparent electrodes. We report on the characteristics of a new class of asymmetric meshes, tiled using a recently discovered family of pentagons. Micron-scale meshes were fabricated on flexible polyethylene terephthalate substrates via optical lithography, metal evaporation (Ti 10 nm, Pt 50 nm), and lift-off. Three different designs were assessed, each with the same tessellation pattern and line width (5 μm), but with different sizes of the fundamental pentagonal unit. Good mechanical stability was observed for both tensile strain and compressive strain. After 1000 bending cycles, devices subjected to tensile strain showed fractional resistance increases in the range of 8-17%, while devices subjected to compressive strain showed fractional resistance increases in the range of 0-7%. The performance of the pentagonal metal mesh devices as visible transparent heaters via Joule heating was also assessed. Rapid response times (∼15 s) at low bias voltage (≤5 V) and good thermal resistance characteristics (213-258 °C cm/W) were found using measured thermal imaging data. Deicing of an ice-bearing glass coupon on top of the transparent heater was also successfully demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b12995DOI Listing

Publication Analysis

Top Keywords

pentagonal metal
8
metal meshes
8
flexible transparent
8
transparent electrodes
8
tensile strain
8
compressive strain
8
devices subjected
8
strain fractional
8
fractional resistance
8
resistance increases
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!