Angiosperms evolved and diversified during the Cretaceous period. Early angiosperms were short-stature weedy plants thought to have increased fire frequency and mortality in gymnosperm forest, aiding their own expansion. However, no explorations have considered whether the range of novel fuel types that diversified throughout the Cretaceous also altered fire behaviour, which should link more strongly to mortality than fire frequency alone. We measured ignitability and heat of combustion in analogue Cretaceous understorey fuels (conifer litter, ferns, weedy and shrubby angiosperms) and used these data to model palaeofire behaviour. Variations in ignition, driven by weedy angiosperms alone, were found to have been a less important feedback to changes in Cretaceous fire activity than previously estimated. Our model estimates suggest that fires in shrub and fern understories had significantly greater fireline intensities than those fuelled by conifer litter or weedy angiosperms, and whilst fern understories supported the most rapid fire spread, angiosperm shrubs delivered the largest amount of heat per unit area. The higher fireline intensities predicted by the models led to estimates of enhanced scorch of the gymnosperm canopy and a greater chance of transitioning to crown fires. Therefore, changes in fire behaviour driven by the addition of new Cretaceous fuel groups may have assisted the angiosperm expansion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5245107 | PMC |
http://dx.doi.org/10.1111/nph.14264 | DOI Listing |
Environ Sci Technol
January 2025
CMA Earth System Modeling and Prediction Centre (CEMC), China Meteorological Administration, Beijing 100081, China.
Vegetation fires release a large fraction of light-absorbing components, which can contribute to the melting of snowpack and alpine glaciers. However, the relationship between variability in fire emissions and alpine glacier melting on the Third Pole (TP) remains poorly understood. This study provides evidence that carbon emissions from windward vegetation fires play a crucial role in comprehending glacier melting on the TP, particularly during the months of intense vegetation fires from March to May for monsoon-dominated glaciers and from June to October for westerlies-dominated glaciers.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.
A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, Delhi, 110078, India.
This study investigates the spatio-temporal distribution of formaldehyde (HCHO) over the mainland Southeast Asian region (including Northeast India) from 2019 to 2022 using TROPOMI satellite data. HCHO is a key atmospheric trace gas which is influenced by both natural processes and anthropogenic activities. We analyze HCHO levels in relation to atmospheric species including carbon monoxide (CO), nitrogen dioxide (NO), and environmental factors such as land surface temperature (LST), precipitation (PPT), fire radiative power (FRP), and enhanced vegetation index (EVI).
View Article and Find Full Text PDFCirc Cardiovasc Qual Outcomes
January 2025
Division of Emergency Medical Services, Public Health - Seattle & King County, WA (J.S., J.L., M.P., C.D., J.B., S.G., P.K., T.R.).
Background: Although racial disparities have been described in resuscitation, little is known about potential bias in race classification of out-of-hospital cardiac arrest (OHCA).
Methods: We conducted a retrospective cohort study of adults treated by emergency medical services (EMS) for nontraumatic OHCA in King County, WA between January 1, 2018, and December 31, 2021. We assessed agreement using κ and evaluated patterns of missingness between EMS-assessed race versus comprehensive race classification from hospital and death records.
Ecotoxicol Environ Saf
January 2025
Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Perfluorononanoic acid (PFNA), widely employed in surfactants, coatings, plastics, corrosion inhibitors, and fire-extinguishing agents, is less regulated than PFOS or PFOA but displays higher bioaccumulation and potential toxicity. Most toxicity assessments have focused on mammals, fish, and algae, with limited research on ground-dwelling arthropods, especially ants. Here, we examined PFNA's toxic effects on red imported fire ants (RIFAs), a prevalent ground-dwelling species in South China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!