Graphene, the sp carbonaceous two-dimensional (2D) material, is gaining more attention in recent electrochemical studies. However, this atomic thick electrode usually suffers with surface contamination and poor electrochemical endurance. To overcome the drawbacks, we developed a PMMA-assisted, flipped transfer method to fabricate the graphene electrode with pristine surface and prolonged lifetime in hydrogen evolution reaction (HER). The HER performances of the single-layer graphene (SLG) were evaluated on various insulating and conductive substrates, including SiO, polymers, SLG, highly oriented pyrolytic graphite (HOPG), and copper. The parallel Tafel slopes of SLG, bilayer graphene (BLG), and HOPG suggest they share the same electrochemical activities deriving from the sp carbon basal plane. Moreover, the atomic barriers, both for SLG and the single-layer h-BN (SLBN), are semitransparent in HER for the underneath copper, providing a new perspective for the 2D materials to protect and couple with the other electrochemical catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b14732 | DOI Listing |
Polymers (Basel)
January 2025
Research School of Chemical and Biomedical Technologies, Tomsk Polytechnic University, Lenin Ave. 30, 634050 Tomsk, Russia.
Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Middle Tennessee State University, 440 Friendship Street, Murfreesboro, TN 37132, USA.
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).
View Article and Find Full Text PDFMolecules
January 2025
Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Avenue 90-92, District 5, 050663 Bucharest, Romania.
This paper summarizes the main findings of a study which aimed to examine the electrochemical oxidation of homovanillic acid (HVA), the final metabolite of dopamine. A pencil graphite electrode (PGE) was used as working electrode and the measurements were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The type and the composition of the graphite leads used as PGE, the pH of the supporting electrolyte, as well as the scan rates were optimized by CV.
View Article and Find Full Text PDFMolecules
January 2025
School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazoles, are expected to be functional probes, but their synthetic methods are extremely limited. Herein, we describe electrochemical reactions of 3-amino-2-naphthol or 3-amino-2-anthracenol and isothiocyanates in DMSO, using a graphite electrode as an anode and a platinum electrode as a cathode in the presence of potassium iodide (KI), which afford -arylnaphtho- and -arylanthra[2,3-]oxazol-2-amines via cyclodesulfurization.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Chemistry, St. Petersburg State University, 199034 St. Petersburg, Russia.
Deep eutectic solvents (DES) have emerged as versatile, sustainable media for the synthesis of nanomaterials due to their low toxicity, tunability, and biocompatibility. This study develops a one-step method to modify commercially available screen-printed electrodes (SPE) using laser-induced pyrolysis of DES, consisting of choline chloride and tartaric acid with dissolved nickel acetate and dispersed graphene. The electrodes were patterned using a 532 nm continuous-wave laser for the in situ formation of Ni nanoparticles decorated on graphene sheets directly on the SPE surface (Ni-G/SPE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!