Some herbivore-induced-plant volatiles (HIPVs) compounds are vital for the functioning of an ecosystem, by triggering multi-trophic interactions for natural enemies, plants and herbivores. However, the effect of these chemicals, which play a crucial role in regulating the multi-trophic interactions between plant-herbivore-entomopathogenic fungi, is still unknown. To fill this scientific gap, we therefore investigated how these chemicals influence the entomopathogenic fungi growth and efficacy. In this study, Lipaphis erysimi induced Arabidopsis thaliana HIPVs were collected using headspace system and detected with GC-MS, and then analyzed the effects of these HIPVs chemicals on Lecanicillium lecanii strain V3450. We found that the HIPVs menthol and methyl salicylate at 1 and 10 nmol·ml improved many performance aspects of the fungus, such as germination, sporulation, appressorial formation as well as its pathogenicity and virulence. These findings are not only important for understanding the multi-trophic interactions in an ecosystem, but also would contribute for developing new and easier procedures for conidial mass production as well as improve the pathogenicity and virulence of entomopathogenic fungi in biological pest management strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5227919PMC
http://dx.doi.org/10.1038/srep40494DOI Listing

Publication Analysis

Top Keywords

entomopathogenic fungi
12
multi-trophic interactions
12
methyl salicylate
8
pathogenicity virulence
8
herbivore-induced plant
4
plant volatiles
4
volatiles methyl
4
salicylate menthol
4
menthol positively
4
positively affect
4

Similar Publications

Does the use of engorged adult ticks of Rhipicephalus microplus as substrate modifies the acaricidal behavior of Metarhizium anisopliae?

Exp Appl Acarol

January 2025

Centro de Enseñanza, Investigación, y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad, Nacional Autónoma de México, CDMX, México.

Entomopathogenic fungi (EPF) is one of the most promising alternatives to regulate tick populations. However, these fungi may lose acaricidal effectiveness over time, due to the storage period and/or successive cultivation on artificial media. It is known that using arthropod pests as a substrate for EPF could potentially alter their acaricidal behavior over time, however, studies using ticks for this purpose are scarce.

View Article and Find Full Text PDF

Some key secondary metabolism genes are important for driving the infection process of entomopathogenic fungi; however, their chemical substance basis has not been well investigated. Here, mixtures of polyol lipids are discovered, which are synthesized through iterative chain transfer-esterification-hydrolysis cycles catalyzed by serine hydrolase during the release of online highly reducing polyketide intermediates. Importantly, an gene knockout experiment revealed that the synthesis of polyol lipids is necessary for rodlet layer formation on the cell wall of .

View Article and Find Full Text PDF

Metarhizium anisopliae: current status and future in hard ticks control in Asia.

Trop Biomed

December 2024

Mycology and Pathology Branch, Forest Health and Conservation Programme, Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor, Malaysia.

Ticks exert a significant economic impact on the livestock industry, particularly in Asian regions. Presently, chemical acaricides constitute the primary method employed to combat tick infestations in livestock, but their use carries adverse environmental consequences. Overreliance on acaricides has contaminated milk and meat products with chemical residues while fostering tick resistance to these agents due to improper and intensive application.

View Article and Find Full Text PDF

Two novel entomopathogenic fungal species of Lecanicillium isolated from soil in China.

BMC Microbiol

January 2025

College of Plant Protection, National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, 510642, China.

The genus Lecanicillium was established in 2001 based on the type species Lecanicillium lecani (former, Verticillium lecani), which is an important entomopathogenic fungus. To date, more than thirty species in the genus have been reported, but much more are waiting to discover. In this study, two novel species isolated from soil in east China were identified.

View Article and Find Full Text PDF

Elucidating the pathogenicity of Metarhizium to Euschistus heros (Hemiptera: Pentatomidae) eggs.

J Invertebr Pathol

January 2025

Department of Entomology and Acarology, Escola Superior de Agricultura 'Luiz de Queiroz', University of São Paulo (ESALQ-USP), Av. Pádua Dias, 11, Piracicaba, SP CEP 13418-900, Brazil.

The ovicidal effect of entomopathogenic fungi and the mechanisms involved are still debated. The hypothesis that the metabolic activity of germinating conidia can cause insect embryos to become unviable without physical penetration has been proposed. Here, we demonstrated that Metarhizium anisopliae and Metarhizium pingshaense (in a different manner from Beauveria bassiana), reduced the percentage of nymphs hatching to less than 3%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!