Lasing action from photonic bound states in continuum.

Nature

Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093-0407, USA.

Published: January 2017

In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger's equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach's quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature20799DOI Listing

Publication Analysis

Top Keywords

lasing action
12
bound states
12
states continuum
12
quantum mechanics
8
bic lasers
8
bic cavity
8
bics
6
bic
6
lasing
4
action photonic
4

Similar Publications

We report lasing action in a femtosecond-laser-inscribed waveguide in thulium-doped barium-gallium-germanium oxide (BGG) glass. A laser cavity was assembled with this waveguide that provided a single-mode output of 62 mW when pumped at 1.6 µm.

View Article and Find Full Text PDF

The emission of N lasing at 391 nm from 800 nm femtosecond laser filament in air at 1 atm presents significant challenges due to the quenching effect induced by oxygen molecules. We introduce a simple technique for the 391 nm N lasing emission induced by a corona electric field-assisted femtosecond filament in air. This technique greatly addresses the challenge of exciting a 391 nm lasing from 800 nm femtosecond laser filament in air at 1 atm.

View Article and Find Full Text PDF

The ultimate limit for laser miniaturization would be achieving lasing action in the lowest-order cavity mode within a device volume of ≤(λ/2n), where λ is the free-space wavelength and n is the refractive index. Here we highlight the equivalence of localized surface plasmons and surface plasmon polaritons within resonant systems, introducing nanolasers that oscillate in the lowest-order localized surface plasmon or, equivalently, half-cycle surface plasmon polariton. These diffraction-limited single-mode emitters, ranging in size from 170 to 280 nm, harness strong coupling between gold and InGaAsP in the near-infrared (λ = 1,000-1,460 nm), away from the surface plasmon frequency.

View Article and Find Full Text PDF

GeSn alloy has emerged as an attractive active material for Si-based mid-infrared (MIR) lasers due to its direct bandgap nature at higher Sn concentrations. Here, we report on an optically-pumped GeSn MIR lasers based on planar slab waveguide with a top Si ridge structure. The inclusion of 10% Sn transforms the GeSn active layer into a direct bandgap material.

View Article and Find Full Text PDF

Photonic modes exhibiting a polarization winding akin to a vortex possess an integer topological charge. Lasing with topological charge 1 or 2 can be realized in periodic lattices of up to six-fold rotational symmetry-higher order charges require symmetries not compatible with any two-dimensional Bravais lattice. Here, we experimentally demonstrate lasing with topological charges as high as -5, +7, -17 and +19 in quasicrystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!