Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: To assess the role of the endothelial glycocalyx (eGCX) for the uptake of nanoparticles by endothelial cells.
Methods: The expression of the eGCX on cultured human umbilical vein endothelial cells was determined by immunostaining of heparan sulfate. Enzymatic degradation of the eGCX was achieved by incubating the cells with eGCX-shedding enzymes. The uptake of 50-nm polystyrene nanospheres was quantified by confocal microscopy.
Results: Human umbilical vein endothelial cells expressed a robust eGCX when cultured for 10 days. The uptake of both carboxylated and aminated polystyrene nanospheres was significantly increased in cells in which the glycocalyx was enzymatically degraded, while it remained at a low level in cells with an intact glycocalyx.
Conclusion: The eGCX constitutes a barrier against the internalization of blood-borne nanoparticles by endothelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/nnm-2016-0332 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!