Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5484280PMC
http://dx.doi.org/10.1002/wnan.1447DOI Listing

Publication Analysis

Top Keywords

synthetic plant
4
plant virology
4
virology nanobiotechnology
4
nanobiotechnology nanomedicine
4
nanomedicine nanotechnology
4
nanotechnology rapidly
4
rapidly expanding
4
expanding field
4
field seeking
4
seeking utilize
4

Similar Publications

Klebsiella pneumoniae is a leading cause of anti-microbial resistance in healthcare-associated infections that have posed a severe threat to neonatal and wider community. The escalating crises of antibiotic resistance have compelled researchers to explore an innovative arsenal beginning from natural resources to chemical modifications in order to overcome the ever-increasing resistance issues. The present review highlights the drug discovery efforts with a special focus on cutting-edge strategies in the hunt for potential drug candidates against MDR/XDR Klebsiella pneumoniae.

View Article and Find Full Text PDF

A novel geminivirus-derived 3' flanking sequence of terminator mediates the gene expression enhancement.

Plant Biotechnol J

December 2024

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China.

Exploring the new elements to re-design the expression cassette is crucial in synthetic biology. Viruses are one of the most important sources for exploring gene expression elements. In this study, we found that the DNA sequence of the SBG51 deltasatellite from the Sweet potato leaf curl virus (SPLCV) greatly enhanced the gene expression when flanked downstream of the terminator.

View Article and Find Full Text PDF

Miller is a highly valued aromatic and nutritious plant. The unique compositions of its essential oil make it more valuable in the flavor, fragrance, and medicinal industries. However, the potential of superheated steam distillation for obtaining essential oils from its seeds has not been explored in detail.

View Article and Find Full Text PDF

Recent progress in the source, extraction, activity mechanism and encapsulation of bioactive essential oils.

Crit Rev Food Sci Nutr

December 2024

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.

There is growing concern about the potential risks posed by synthetic additives in industrial products, such as foods, cosmetics, agrochemicals, and personal care products. Many plant-derived essential oils (EOs) have been shown to exhibit excellent antibacterial, antifungal, antiviral, and antioxidant activities, and may therefore be used as natural preservatives in these applications. However, most EOs have relatively low water solubility and are prone to chemical degradation during storage.

View Article and Find Full Text PDF

The biosynthesis of nanomaterials is a vast and expanding field of study due to their applications in a variety of fields, particularly the pharmaceutical and biomedical fields. Various synthetic routes, including physical and chemical methods, have been developed in order to generate metal nanoparticles (NPs) with definite shapes and sizes. In this review, focused on the recent advancements in the green synthetic methods for the generation of silver, zinc and copper NPs with simple and eco-friendly approaches and the potential of the biosynthesized metal and metal oxide NPs as alternative and therapeutic agent for the treatment of inflammatory diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!