Parkinson's disease (PD) is characterized by the pathological accumulation of misfolded proteins. Molecular chaperones assist in the proper folding of proteins and removal of irreversibly misfolded proteins. This study aims to identify potential chaperones associated with protein misfolding and accumulation in PD. ATRA/TPA-differentiated SH-SY5Y cells were treated with 1 mM of MPP for 48 hours. Proteins were analyzed by 2D-DIGE followed by MALDI-ToF MS. The treatment of differentiated SH-SY5Y cells by MPP led to the unambiguous identification of 10 protein spots, which corresponds to six proteins. Among these six proteins, four were chaperone proteins including nucleophosmin (NPM1), chaperonin-containing TCP-1 subunit 2 (CCT2 or CCTβ), heat shock 90 kDa protein 1 beta (HSP90AB1 or HSP90-β), and tyrosin3/tryptopha5-monoxygenase activation protein, zeta polypeptide (14-3-3ζ, gene symbol: Ywhaz). To our knowledge, this is the first report that linked the upregulation of chaperones after MPP treatment with SH-SY5Y cells. However, the NPM1 protein was identified for the first time in the PD model. The upregulation of four chaperone proteins provided evidence that these chaperones have a complementary effect on protein misfolding in the pathogenesis of PD, and hold promise as a good therapeutic target for PD treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209517 | PMC |
Pharmaceutics
January 2025
Innovation and Medical Science, SIFI S.p.A., 95025 Aci Sant'Antonio, Italy.
Retinal ganglion cell (RGC) protection represents an unmet need in glaucoma. This study assessed the neuroprotective, antioxidant, and anti-inflammatory effect of a new nutraceutical formulation named Epicolin, based on citicoline, homotaurine, epigallocatechin-3-gallate, forskolin, and vitamins, through in vitro and in vivo studies. The neuroprotective effect of Epicolin or its single components, and Epicolin compared to an untreated control and two marketed formulations [Formulation G (FG) and N (FN)], was evaluated in neuroblastoma cells (SH-SY5Y) challenged with staurosporine.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea.
Background: (Cardamom) and (Fennel) are well-known spices and are also used as natural mouth fresheners. This study was performed to evaluate their neuroprotective ability based on certain acellular and cellular assays.
Methods: Hexane and ethyl acetate extracts were prepared using cardamom and fennel seeds.
Int J Mol Sci
January 2025
College of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
Cicadae Periostracum (CP) is a traditional Chinese animal-derived medicine with the potential to treat Parkinson's disease (PD). This study aims to explore the pharmacodynamic mechanisms of CP against PD-based on metabolomics technology and provide a theoretical basis for developing new anti-PD medicine. First, MPP-induced SH-SY5Y cells were used to evaluate the anti-PD activity of CP.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Department for Innovation in Biological, Agro-Food and Forest Systems, Tuscia University, 01100 Viterbo, Italy.
In addition to the immature edible flower heads, the cultivation of globe artichoke ( L. var. (L.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
Although commonly appreciated for their anti-oxidative and neuroprotective properties, flavonoids can also exhibit pro-oxidative activity, potentially reducing cell survival, particularly in the presence of metal ions. Disrupted copper homeostasis is a known contributor to neuronal dysfunction through oxidative stress induction. This study investigated the effects of myricitrin (1-20 μg/mL) on copper-induced toxicity (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!