Molecular cloning, characterization and expression analysis of two juvenile hormone esterase-like carboxylesterase cDNAs in Chinese mitten crab, Eriocheir sinensis.

Comp Biochem Physiol B Biochem Mol Biol

Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China. Electronic address:

Published: March 2017

Precise regulation of methyl farnesoate (MF) titer is of prime importance throughout the crustacean life-cycle. Although the synthetic pathway of MF is well-documented, little is known about its degradation and recycling in crustaceans. Juvenile hormone esterase-like (JHE-like) carboxylesterase (CXE) is a key enzyme in MF degradation, thus playing a significant role in regulating the MF titer. We identified and characterized two cDNAs, Es-CXE1 and Es-CXE2, encoding JHE-like CXEs in Chinese mitten crab. Full-length cDNAs of Es-CXE1 and Es-CXE2 encode proteins composed of 584 and 597 amino acids, respectively, both of which contain a typical carboxylesterase domain. Alignment and phylogenetic analyses revealed that the Es-CXEs are highly similar to those of other crustaceans. To further validate their functions, we evaluated the mRNA expression patterns of the Es-CXEs in various tissues and in different physiological conditions. Tissue-specific expression analysis showed that the two Es-CXEs were predominantly expressed in the hepatopancreas and ovaries, which are the major tissues for MF metabolism. Es-CXE2 expression levels in the hepatopancreas and ovaries were about 100 and 25-fold higher, than the respective Es-CXE1 expressions. During ovarian rapid development stage, the global expressions of Es-CXEs were up-regulated in the hepatopancreas and down-regulated in the ovaries. After eyestalk ablation (ESA), the mRNA expressions of the two Es-CXEs were up-regulated in the hepatopancreas, further indicating their potential in degrading MF. Taken together, our results suggest that Es-CXEs, the key component of the juvenile hormone degradation pathway, may play vital roles in the development and reproduction of the Chinese mitten crab.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2017.01.002DOI Listing

Publication Analysis

Top Keywords

juvenile hormone
12
chinese mitten
12
mitten crab
12
expression analysis
8
hormone esterase-like
8
cdnas es-cxe1
8
es-cxe1 es-cxe2
8
hepatopancreas ovaries
8
expressions es-cxes
8
es-cxes up-regulated
8

Similar Publications

Juvenile hormone (JH) regulates multiple physiological functions in insects including growth, metamorphosis, and reproduction. Juvenile hormone epoxide hydrolase (JHEH) and juvenile hormone esterase (JHE) are degradative enzymes that metabolise JH, and JH receptor (methoprene-tolerant, ) functions in the regulation of female reproduction and vitellogenesis. In this study, JH titres in adult females were determined using ultra high-performance liquid chromatography and tandem mass spectrometry; the JH titres ranged from 0.

View Article and Find Full Text PDF

The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates, and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids, and molluscs.

View Article and Find Full Text PDF

is a major migratory invasive pest and is of global concern. Vitellogenesis, a crucial process for population multiplication in oviparous insects, is regulated by endocrine hormones. In this study, three primary responders to JH signaling, the JH receptor gene , and the downstream transcription factor and , were first cloned and identified.

View Article and Find Full Text PDF

Histone deacetylases synergistically regulate juvenile hormone signaling in the yellow fever mosquito, Aedes aegypti.

Insect Biochem Mol Biol

December 2024

Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA. Electronic address:

Article Synopsis
  • Effective control of Aedes aegypti mosquitoes is vital to reduce diseases like dengue and zika, focusing on blocking their transition from larvae to adults.
  • Research shows that histone deacetylases (HDACs) play a role in regulating juvenile hormone (JH) signaling and metamorphosis, particularly in other insects, but their function in Aedes aegypti is not well understood.
  • Knocking down specific HDAC genes increased the expression of a key gene (Kr-h1) involved in larval development, with each HDAC affecting different biological processes in mosquito growth, leading to varied developmental issues.
View Article and Find Full Text PDF

Aquatic herbicides are commonly used to control a variety of non-native plants. One common active ingredient used in commercial herbicide formulations globally is 2,4-dichlorophenoxyacetic acid (2,4-D). Though 2,4-D is used in aquatic ecosystems, no studies have investigated cellular, biochemical, and transcriptional effects or mechanisms of 2,4-D exposure on fathead minnows (Pimephales promelas) throughout juvenile development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!