Background: Detection and preventing entry of exotic viruses and viroids at the border is critical for protecting plant industries trade worldwide. Existing post entry quarantine screening protocols rely on time-consuming biological indicators and/or molecular assays that require knowledge of infecting viral pathogens. Plants have developed the ability to recognise and respond to viral infections through Dicer-like enzymes that cleave viral sequences into specific small RNA products. Many studies reported the use of a broad range of small RNAs encompassing the product sizes of several Dicer enzymes involved in distinct biological pathways. Here we optimise the assembly of viral sequences by using specific small RNA subsets.
Results: We sequenced the small RNA fractions of 21 plants held at quarantine glasshouse facilities in Australia and New Zealand. Benchmarking of several de novo assembler tools yielded SPAdes using a kmer of 19 to produce the best assembly outcomes. We also found that de novo assembly using 21-25 nt small RNAs can result in chimeric assemblies of viral sequences and plant host sequences. Such non-specific assemblies can be resolved by using 21-22 nt or 24 nt small RNAs subsets. Among the 21 selected samples, we identified contigs with sequence similarity to 18 viruses and 3 viroids in 13 samples. Most of the viruses were assembled using only 21-22 nt long virus-derived siRNAs (viRNAs), except for one Citrus endogenous pararetrovirus that was more efficiently assembled using 24 nt long viRNAs. All three viroids found in this study were fully assembled using either 21-22 nt or 24 nt viRNAs. Optimised analysis workflows were customised within the Yabi web-based analytical environment. We present a fully automated viral surveillance and diagnosis web-based bioinformatics toolkit that provides a flexible, user-friendly, robust and scalable interface for the discovery and diagnosis of viral pathogens.
Conclusions: We have implemented an automated viral surveillance and diagnosis (VSD) bioinformatics toolkit that produces improved viruses and viroid sequence assemblies. The VSD toolkit provides several optimised and reusable workflows applicable to distinct viral pathogens. We envisage that this resource will facilitate the surveillance and diagnosis viral pathogens in plants, insects and invertebrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225587 | PMC |
http://dx.doi.org/10.1186/s12859-016-1428-4 | DOI Listing |
Heliyon
January 2025
Institute of Biology, Faculty of Sciences, University of Pécs, H-7624, Pécs, Hungary.
In the global effort to discover or design new effective antibiotics to fight infectious diseases, the increasingly available multi-omics data with novel bioinformatics tools open up new horizons for the exploration of the genetic potential of bacteria to synthesize bioactive secondary metabolites. Rare actinomycetes are a prolific source of structurally diverse secondary metabolites that exhibit remarkable clinical and industrial importance. Recently several excellent genome mining tools have been available for identifying biosynthetic gene clusters, however in cases of poor-quality sequences and inappropriate genome assembly, these tools are not always able to identify the corresponding gene clusters.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia.
Regulatory genes are critical determinants of cellular responses in development and disease, but standard RNA sequencing (RNA-seq) analysis workflows, such as differential expression analysis, have significant limitations in revealing the regulatory basis of cell identity and function. To address this challenge, we present the TRIAGE R package, a toolkit specifically designed to analyze regulatory elements in both bulk and single-cell RNA-seq datasets. The package is built upon TRIAGE methods, which leverage consortium-level H3K27me3 data to enrich for cell-type-specific regulatory regions.
View Article and Find Full Text PDFTaiwan J Obstet Gynecol
January 2025
Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua, Taiwan; Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan; Department of Medical Research, Changhua Christian Hospital, Changhua, Taiwan; Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:
Objective: Ichthyosis are complex skin diseases, characterized by hyperkeratosis with various degrees of thickening, desquamation, and erythema. The prenatal diagnosis of ichthyosis is challenged due to the clinical and genetic heterogeneity and the late-onset of fetal features on ultrasound scan. Here, we reported two fetuses with Harlequin ichthyosis (HI), a severe subtype of autosomal recessive congenital ichthyosis (ARCI), who were diagnosed prenatally by images and genetic investigations.
View Article and Find Full Text PDFPhytopathology
January 2025
Agricultural University of Hebei, 289 Lingyusi, Baoding, Baoding, Hebei, China, 071001;
Wheat leaf rust, caused by Erikss. (), is one of the most devastating diseases in common wheat ( L.) globally.
View Article and Find Full Text PDFBioinformatics
December 2024
Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
Summary: The intrinsic complexity of the microbiota combined with technical variability render shotgun metagenomics challenging to analyze for routine clinical or research applications. In silico data generation offers a controlled environment allowing for example to benchmark bioinformatics tools, to optimize study design, statistical power, or to validate targeted applications. Here we propose assembly_finder and the Metagenomic Sequence Simulator (MeSS), two easy-to-use Bioconda packages, as part of a benchmarking toolkit to download genomes and simulate shotgun metagenomics samples, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!