Most ribosomal proteins (RP) are regarded as essential, static components that contribute only to ribosome biogenesis and protein synthesis. However, emerging evidence suggests that RNA-binding RP are dynamic and can influence cellular processes by performing "extraribosomal," regulatory functions involving binding to select critical target mRNAs. We report here that the RP, Rpl22, and its highly homologous paralog Rpl22-Like1 (Rpl22l1 or Like1) play critical, extraribosomal roles in embryogenesis. Indeed, they antagonistically control morphogenesis through developmentally regulated localization to the nucleus, where they modulate splicing of the pre-mRNA encoding smad2, an essential transcriptional effector of Nodal/TGF-β signaling. During gastrulation, Rpl22 binds to intronic sequences of smad2 pre-mRNA and induces exon 9 skipping in cooperation with hnRNP-A1. This action is opposed by its paralog, Like1, which promotes exon 9 inclusion in the mature transcript. The nuclear roles of these RP in controlling morphogenesis represent a fundamentally different and paradigm-shifting mode of action for RP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234864PMC
http://dx.doi.org/10.1016/j.celrep.2016.12.034DOI Listing

Publication Analysis

Top Keywords

ribosomal proteins
8
control morphogenesis
8
proteins rpl22
4
rpl22 rpl22l1
4
rpl22l1 control
4
morphogenesis regulating
4
regulating pre-mrna
4
pre-mrna splicing
4
splicing ribosomal
4
proteins regarded
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!