A theoretical framework to predict the most likely ion path in particle imaging.

Phys Med Biol

Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec, Canada. Département de radio-oncologie et CRCHU de Québec, CHU de Québec, QC, Canada. Department of Radiation Oncology, Francis H. Burr Proton Therapy Center Massachusetts General Hospital (MGH), Boston, MA, United States of America.

Published: March 2017

AI Article Synopsis

Article Abstract

In this work, a generic rigorous Bayesian formalism is introduced to predict the most likely path of any ion crossing a medium between two detection points. The path is predicted based on a combination of the particle scattering in the material and measurements of its initial and final position, direction and energy. The path estimate's precision is compared to the Monte Carlo simulated path. Every ion from hydrogen to carbon is simulated in two scenarios, (1) where the range is fixed and (2) where the initial velocity is fixed. In the scenario where the range is kept constant, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.50 mm) and the helium path estimate (0.18 mm), but less so up to the carbon path estimate (0.09 mm). However, this scenario is identified as the configuration that maximizes the dose while minimizing the path resolution. In the scenario where the initial velocity is fixed, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.29 mm) and the helium path estimate (0.09 mm) but increases for heavier ions up to carbon (0.12 mm). As a result, helium is found to be the particle with the most accurate path estimate for the lowest dose, potentially leading to tomographic images of higher spatial resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/aa58ceDOI Listing

Publication Analysis

Top Keywords

path estimate
24
path
16
monte carlo
12
path ion
8
initial velocity
8
velocity fixed
8
maximal root-mean-square
8
root-mean-square error
8
error estimated
8
estimated path
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!