Extreme precipitation is predicted to be more frequent and intense accompanying global warming and may have profound impacts on soil respiration (Rs) and its components, that is, autotrophic (Ra) and heterotrophic (Rh) respiration. However, how natural extreme rainfall or snowfall events affect these fluxes are still lacking, especially under nitrogen (N) fertilization. In this study, extreme rainfall and snowfall events occurred during a 3-year field experiment, allowing us to examine their effects on the response of Rs, Rh, and Ra to N supply. In normal rainfall years of 2011/2012 and 2012/2013, N fertilization significantly stimulated Rs by 23.9% and 10.9%, respectively. This stimulation was mainly due to the increase of Ra because of N-induced increase in plant biomass. In the record wet year of 2013/2014, however, Rs was independent on N supply because of the inhibition effect of the extreme rainfall event. Compared with those in other years, Rh and Ra were reduced by 36.8% and 59.1%, respectively, which were likely related to the anoxic stress on soil microbes and decreased photosynthates supply. Although N supply did not affect annual Rh, the response ratio (RR) of Rh flux to N fertilization decreased firstly during growing season, increased in nongrowing season and peaked during spring thaw in each year. Nongrowing season Rs and Rh contributed 5.5-16.4% to their annual fluxes and were higher in 2012/2013 than other years due to the extreme snowfall inducing higher soil moisture during spring thaw. The RR of nongrowing season Rs and Rh decreased in years with extreme snowfall or rainfall compared to those in normal years. Overall, our results highlight the significant effects of extreme precipitation on responses of Rs and its components to N fertilization, which should be incorporated into models to improve the prediction of carbon-climate feedbacks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.13620 | DOI Listing |
Data Brief
February 2025
Department of Earth and Geoenvironmental Sciences, University of Bari, 70125 Bari, Italy.
An open-source geodatabase and its associate WebGIS platform (CONNECTOSED) were developed to collect and utilize data for the Sediment Flow Connectivity Index (SfCI) for the Apulia region of southern Italy. Maps depicting sediment mobility and connectivity across the hydrographic basins of the Apulia region were generated and stored in the geodatabase. This geodatabase is organized into folders containing data in TIFF, shapefile, Jpeg and Pdf formats, including input variables (digital elevation model, land cover map, rainfall map, and soil units dataset for each hydrographic basin), classification graphs (ranking of variable values), dimensionless index maps (slope, ruggedness, rainfall, land cover, and soil stability) and key products (maps of sediment mobility, SfCI, and applied SfCI).
View Article and Find Full Text PDFHeliyon
January 2025
Grupo de Investigación en Energías Renovables y Meteorología-GIERMET, Universidad Tecnológica del Chocó, Cra 22 No 18b -10, Quibdó, Colombia.
The corrosion rates of carbon steel and galvanized steel according to the ISO 9223 standard, the effect of pollutant contamination and atmospheric aggressiveness under high rainfall conditions in the Chocó department were studied. Carbon and galvanized steel samples, chloride, and sulfur collectors were exposed in three atmospheric stations in three strategic positions covering the Colombian Pacific: Quibdó, Andagoya and Bahía Solano, for different exposure periods (up to 18 months). The structural-micro characterization of corrosion products was evaluated via X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy SEM-EDS.
View Article and Find Full Text PDFSci Data
January 2025
University of Southern California, Viterbi School of Engineering, 3737 Watt Way, Powell Hall of Engineering, Los Angeles, CA, 90089, USA.
Soil erosion in North Africa modulates agricultural and urban developments as well as the impacts of flash floods. Existing investigations and associated datasets are mainly performed in localized urban areas, often representing a limited part of a watershed. The above compromises the implementation of mitigation measures for this vast area under accentuating extremes and continuous hydroclimatic fluctuations.
View Article and Find Full Text PDFNat Commun
January 2025
School of Atmospheric Sciences, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
The boreal summer circumglobal teleconnection (CGT) provides a primary predictability source for mid-latitude Northern Hemisphere climate anomalies and extreme events. Here, we show that the CGT's circulation structure has been displaced westward by half a wavelength since the late 1970s, more severely impacting heatwaves and droughts over East Europe, East Asia, and southwestern North America. We present empirical and modelling evidence of the essential role of El Niño-Southern Oscillation (ENSO) in shaping this change.
View Article and Find Full Text PDFEnviron Epidemiol
February 2025
Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Background: Tropical cyclones pose significant health risks and can trigger outbreaks of diarrheal diseases in affected populations. Although the effects of individual hazards, such as rainfall and flooding, on diarrheal diseases are well-documented, the complex multihazard nature of tropical cyclones is less thoroughly explored. To date, no dedicated review comprehensively examines the current evidence and research on the association between tropical cyclones and diarrheal diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!