Human induced pluripotent stem (hiPS) cell technology has already revolutionized some aspects of fundamental and applied research such as study of disease mechanisms and pharmacology screening. The first clinical trial using hiPS cell-derived cells began in Japan, only 10 years after the publication of the proof-of concept article. In this exciting context, strategies to generate hiPS cells have evolved quickly, tending towards non-invasive protocols to sample somatic cells combined with "safer" reprogramming strategies. In this unit, we describe a protocol combining both of these advantages to generate hiPS cells with episomal plasmid transfection from urine samples of individuals carrying the desired genotype. Based on previous published works, this simplified protocol requires minimal equipment and reagents, and is suitable both for scientists familiar with the hiPS cells technology and neophytes. HiPS cells displaying classical features of pluripotency and suitable for all desired downstream applications are generated rapidly (<10 weeks) and with high efficiency. © 2017 by John Wiley & Sons, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphg.26DOI Listing

Publication Analysis

Top Keywords

hips cells
20
human induced
8
induced pluripotent
8
pluripotent stem
8
stem hips
8
urine samples
8
generate hips
8
hips
7
cells
7
cells urine
4

Similar Publications

Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.

View Article and Find Full Text PDF

Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.

View Article and Find Full Text PDF

Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.

View Article and Find Full Text PDF

To enable robust expression of transgenes in stem cells, recombinase mediated cassette exchange at safe harbour loci is frequently adopted. The choice of recombinase enzyme is a critical parameter to ensure maximum efficiency and accuracy of the integration event. We have explored the serine recombinase family of site-specific integrases and have directly compared the efficiency of PhiC31, W-beta and Bxb1 integrase for targeted transgene integration at the Gt(ROSA)26Sor locus in mouse embryonic stem cells.

View Article and Find Full Text PDF

Purpose: To (1) systematically assess which orthobiologic agents are being used in acetabular labral repairs and (2) report all available outcomes for patients undergoing operative management for labral repairs with orthobiologic agents.

Methods: The PubMed, Embase, and Cochrane databases were queried in August 2023. Articles were included if they used an orthobiologic agent during hip arthroscopy for acetabular labral repair and reported functional outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!