In flowering plants, shifts from outcrossing to partial or complete self-fertilization have occurred independently thousands of times, yet the underlying adaptive processes are difficult to discern. Selfing's ability to provide reproductive assurance when pollination is uncertain is an oft-cited ecological explanation for its evolution, but this benefit may be outweighed by costs diminishing its selective advantage over outcrossing. We directly studied the fitness effects of a self-compatibility mutation that was backcrossed into a self-incompatible (SI) population of Leavenworthia alabamica, illuminating the direction and magnitude of selection on the mating-system modifier. In array experiments conducted in two years, self-compatible (SC) plants produced 17-26% more seed, but this advantage was counteracted by extensive seed discounting-the replacement of high-quality outcrossed seeds by selfed seeds. Using a simple model and simulations, we demonstrate that SC mutations with these attributes rarely spread to high frequency in natural populations, unless inbreeding depression falls below a threshold value (0.57 ≤ δ ≤ 0.70) in SI populations. A combination of heavy seed discounting and inbreeding depression likely explains why outcrossing adaptations such as self-incompatibility are maintained generally, despite persistent input of selfing mutations, and frequent limits on outcross seed production in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.13167DOI Listing

Publication Analysis

Top Keywords

self-compatibility mutation
8
reproductive assurance
8
inbreeding depression
8
costs selfing
4
selfing prevent
4
prevent spread
4
spread self-compatibility
4
mutation reproductive
4
assurance flowering
4
flowering plants
4

Similar Publications

Alternative splicing and deletion in S-RNase confer stylar-part self-compatibility in the apple cultivar 'Vered'.

Plant Mol Biol

October 2024

Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan.

Although self-incompatibility in apples (Malus × domestica Borkh.) is regulated by a single S-locus with multiple S-haplotypes that comprise pistil S (S-RNase) and pollen S genes, it is not desirable in commercial orchards because it requires cross-pollination to achieve stable fruit production. Therefore, it is important to identify and characterize self-compatible apple cultivars.

View Article and Find Full Text PDF

New beginnings for dead ends: polyploidy, -SSE models and the dead-end hypothesis.

Ann Bot

December 2024

Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.

Background: Since the mid-20th century, it has been argued by some that the transition from diploidy to polyploidy is an 'evolutionary dead end' in plants. Although this point has been debated ever since, multiple definitions of 'dead end' have been used in the polyploidy literature, without sufficient differentiation between alternative uses.

Scope: Here, we focus on the two most common conceptions of the dead-end hypothesis currently discussed: the 'lowering diversification' hypothesis and the 'rarely successful' hypothesis.

View Article and Find Full Text PDF

Distyly is an iconic floral polymorphism governed by a supergene, which promotes efficient pollen transfer and outcrossing through reciprocal differences in the position of sexual organs in flowers, often coupled with heteromorphic self-incompatibility. Distyly has evolved convergently in multiple flowering plant lineages, but has also broken down repeatedly, often resulting in homostylous, self-compatible populations with elevated rates of self-fertilization. Here, we aimed to study the genetic causes and genomic consequences of the shift to homostyly in Linum trigynum, which is closely related to distylous Linum tenue.

View Article and Find Full Text PDF

Self-incompatibility (SI) is a genetic mechanism common in flowering plants to prevent self-fertilization. Among citrus species, several pummelo, mandarin, and mandarin-like accessions show SI behavior. In these species, SI is coupled with a variable degree of parthenocarpy ensuring the production of seedless fruits, a trait that is highly appreciated by consumers.

View Article and Find Full Text PDF

Transposable elements cause the loss of self-incompatibility in citrus.

Plant Biotechnol J

May 2024

National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, P. R. China.

Self-incompatibility (SI) is a widespread prezygotic mechanism for flowering plants to avoid inbreeding depression and promote genetic diversity. Citrus has an S-RNase-based SI system, which was frequently lost during evolution. We previously identified a single nucleotide mutation in S-RNase, which is responsible for the loss of SI in mandarin and its hybrids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!