Silencing of Forkhead box D1 inhibits proliferation and migration in glioma cells.

Oncol Rep

Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China.

Published: February 2017

Despite the extensive role of Forkhead box transcription factors in the development and progression of various cancers, little is known about their role in glioma. We examined the expression and function of Forkhead box D1 (FOXD1) in glioma cell behavior and found that FOXD1 was upregulated and directly correlated with the glioma grade. Data analysis also revealed significant differences in FOXD1 expression for both gene expression profiles (GSE4290 and GSE7696) and the TCGA datasets. Additionally, decreased FOXD1 expression in U251 and U87 glioma cells caused a delay in cell growth and a disruption in colony formation. FOXD1 silencing also promoted generation of apoptotic bodies containing nuclear fragments. Cells with suppressed expression of FOXD1 markedly reduced glioma cell migration. Our results suggest that FOXD1 may serve as a novel regulator of glioblastoma cell behavior that may offer a novel target for gene targeted glioma therapies.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2017.5344DOI Listing

Publication Analysis

Top Keywords

forkhead box
12
glioma cells
8
glioma cell
8
cell behavior
8
foxd1 expression
8
glioma
7
foxd1
7
expression
5
silencing forkhead
4
box inhibits
4

Similar Publications

Forkhead box M1 (FOXM1), a Forkhead family transcription factor, is often overexpressed in a variety of human cancers, including AML and strongly associated with therapy resistance and unfavourable outcomes. In AML with NPM1 mutations NPM1/FOXM1 complex sequesters FOXM1 in the cytoplasm and confers favourable treatment outcomes for AML patients, because of FOXM1 inactivation. Inhibition of FOXM1 in AML cell lines and animal models of AML sensitizes AML cells to the Bcl2-inhibitor, venetoclax.

View Article and Find Full Text PDF

Reference genome provide insights into sex determination of silver aworana (Osteoglossum bicirrhosum).

BMC Biol

January 2025

Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.

Background: Silver arowana (Osteoglossum bicirrhosum) is a basal fish species with sexual monomorphism, while its sex determination mechanism has been poorly understood, posing a significant challenge to its captive breeding efforts.

Results: We constructed two high-quality chromosome-level genome assemblies for both female and male silver arowana, with scaffold N50 values over 10 Mb. Combining re-sequencing data of 109 individuals, we identified a female-specific region, which was localized in a non-coding region, i.

View Article and Find Full Text PDF

Tau hyper-phosphorylation has been recognized as an essential contributor to neurodegeneration in Alzheimer's disease (AD) and related tauopathies. In the last decade, tau hyper-phosphorylation has gained considerable concern in AD therapeutic development. Tauopathies are manifested with a broad spectrum of symptoms, from dementia to cognitive decline and motor impairments.

View Article and Find Full Text PDF

Background: Muscle atrophy is associated with Type 2 diabetes mellitus, which reduces the quality of life and lacks effective treatment strategies. Previously, it was determined that human umbilical cord mesenchymal stromal cell (hucMSC)-derived exosomes (EXOs) ameliorate diabetes-induced muscle atrophy. However, the systemic application of EXOs is less selective for diseased tissues, which reduces their efficacy and safety associated with their nonspecific biological distribution in vivo.

View Article and Find Full Text PDF

Introduction: Ulcerative colitis (UC) is a chronic inflammatory disease. Patients with UC typically exhibit disruption of the Treg/Th17 immune axis, but its exact mechanism is still unclear.

Methods: This study first analyzed RNA- seq data from public databases of humans and mice, and cytology experiments were conducted to induce or inhibit the expression of SIRT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!