In this Article, we present a new method for the synthesis of diarylnorbornadiene derivatives. Through the use of a two-step procedure consisting of a tandem alkene insertion-Suzuki coupling reaction followed by a DDQ dehydrogenation, we have been able to synthesize derivatives with a wide variety of substituents. We also present the results of UV-visible spectroscopy studies and kinetics experiments that show the effect of substituent on light absorption properties of the norbornadienes as well as the kinetic stability of the quadricyclanes that result from their photochemical conversion. While substitution on the aromatic rings had comparatively little effect on quadricyclane lability, substitution at a bridgehead position with a methyl group produced a quadricyclane that thermally reverted to the norbornadiene at a rate that was significantly slower than that for the quadricyclane without the methyl substituent. From the results of the kinetics experiments, we determined that the reversion of the quadricyclanes occurs via a free radical mechanism with very little contribution from polar effects. This observation led us to speculate as to whether our data may form the basis for a free radical substituent constant, σ•, analogous to the traditional Hammett σ parameter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.6b02025 | DOI Listing |
Small
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India.
Altering the edge sites of 2D MXenes for electrochemical dinitrogen reduction reaction (ENRR) is widely reported, whereas activation of its relatively inert basal planes is neglected. Herein, the activation and the optimization of the basal planes of TiCT (T = *F, *O, and *OH) MXenes toward enhanced ENRR to ammonia is reported. The balanced surface functionalization in TiCT regulates the ENRR kinetics by regulating the potential of zero charge (E) and the electrochemical work function ( ).
View Article and Find Full Text PDFChemSusChem
January 2025
Guangxi University, School of Resource, Environments and Materials, CHINA.
Lithium (Li) metal anodes (LMAs), which show a great potential in constructing high-specific-energy-density Li metal batteries (LMBs), have abstracted wide research interest. However, the generation of Li dendrites and the repeated change of volume upon Li plating/stripping severely block the practical commercialization of LMBs. Herein, the functional carbon fibers (CFs) decorated with ZnO embedded carbon cage (ZnO@C-d-CFs) were fabricated successfully by a two-step route including the in-situ growth of Zn-based metal organic frameworks (MOFs) and subsequent carbonization process, which enriched the lithiophilic sites of CFs host and improved Li+ kinetics of Li+ plating/stripping.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Wenzhou University, College of Chemistry and Materials Engineering, Chashan University Town, 325035, Wenzhou, CHINA.
The heterojunction materials are considered as promising electrocatalyst candidates that empower advanced lithium-sulfur (Li-S) batteries. However, the detailed functional mechanism of heterojunction materials to boost the sulfur redox reaction kinetics remains unclear. Herein, we construct a multifunctional potential well-type Bi2Te3/TiO2 topological insulator (TI) heterojunction with electric dipole domain to elucidate the synergistic mechanism, which facilitates rapid mass transport, strengthens polysulfide capture ability and accelerates polysulfide conversion.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Clusters serve as the optimal model to elucidate the structure-property relationship of materials, bridging condensed matter and individual atoms. The pursuit of exceptionally stable clusters has garnered significant interest. The distinctive electronic configuration and symmetrical geometry generally provide a consistent rationale for their stability.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
Pôle de Microbiologie, Institut Pasteur de Dakar, Sénégal; Faculté de Médecine, Pharmacie et Odontostomatologie, Université Cheikh Anta Diop, Dakar, Sénégal.
Background: Acinetobacter baumannii, particularly carbapenem-resistant strains (CRAB), poses a major concern in the fight against antimicrobial resistance (AMR), identified as a top-priority pathogen by the World Health Organization (WHO). A. baumannii has intrinsic resistance to several antibiotics, including penicillin, cephalosporins, chloramphenicol, and fosfomycin, but the development of AMR has led to the emergence of extremely drug-resistant and pan-resistant isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!