Hot electron-driven photocatalytic water splitting.

Phys Chem Chem Phys

Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA. and Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.

Published: January 2017

We report measurements of photocatalytic water splitting using Au films with and without TiO coatings. In these structures, a thin (3-10 nm) film of TiO is deposited using atomic layer deposition (ALD) on top of a 100 nm thick Au film. We utilize an AC lock-in technique, which enables us to detect the relatively small photocurrents (∼μA) produced by the short-lived hot electrons that are photoexcited in the metal. Under illumination, the bare Au film produces a small AC photocurrent (<1 μA) for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) due to hot electrons and hot holes, respectively, that are photoexcited in the Au film. The samples with TiO produce a larger AC photocurrent indicating that hot electrons are being injected from the metal into the TiO semiconductor where they then reduce hydrogen ions in solution forming H (i.e., 2H + 2e → H). The AC photocurrent exhibits a narrow peak when plotted as a function of reference potential, which is a signature of hot electrons. Here, we photoexcite a monoenergetic source of hot electrons, which produces a peak in the photocurrent, as the electrode potential is swept through the resonance with the redox potential of the desired half-reaction. This stands in contrast to conventional bulk semiconductor photocatalysts, whose AC photocurrent saturates beyond a certain potential (i.e., light limited photocurrent). The photocurrents produced at the metal-liquid interface are smaller than those of the metal-semiconductor system, mainly because, in the metal-semiconductor system, there is a continuum of energy and momentum states that each hot electron can be injected into, while for an ion in solution, the number of energy and momentum states are very small.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp07542hDOI Listing

Publication Analysis

Top Keywords

photocatalytic water
8
water splitting
8
hot electron-driven
4
electron-driven photocatalytic
4
splitting report
4
report measurements
4
measurements photocatalytic
4
splitting films
4
films tio
4
tio coatings
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!