Our previous studied indicated that eukaryotic translation initiation factor 3a (eIF3a) increases the sensitive of platinum-based chemotherapy in lung cancer. MiRNAs play an important role in lung carcinogenesis and drug response. In this study, we aimed to identify potential endogenous miRNAs that inhibit eIF3a expression and determine their influence of this inhibition on cisplatin resistance. Using bioinformatics analysis prediction and confirmation with dual-luciferase reporter assays, we found that miRNA-488 inhibited eIF3a expression by directly binding to the 3'UTR of eIF3a. In addition, the overexpression of miRNA-488 inhibited cell migration and invasion in A549 cells, and also inhibited cell proliferation, cell cycle progression by elevated P27 expression. Compared to the parental cell line, A549/cisplatin (DDP) resistant cells exhibited a higher level of miRNA-488. Moreover, we found that miRNA-488 was associated with cisplatin resistance in three NSCLC cells (A549, H1299 and SK-MES-1). The mechanism of miRNA-488 induced cisplatin resistance was that miRNA-488 activated nucleotide excision repair (NER) by increasing the expression of Replication Protein A (RPA) 14 and Xeroderma pigmentosum group C (XPC). In conclusion, our results demonstrated that miRNA-488 is a tumor suppressor miRNA that acts by targeting eIF3a. Moreover, miRNA-488 also participates in eIF3a mediated cisplatin resistance in NSCLC cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5225486 | PMC |
http://dx.doi.org/10.1038/srep40384 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!