Growth Differentiation Factor 8 (GDF8), also called myostatin, is a member of the transforming growth factor (TGF)-β super-family. As a negative regulator of skeletal muscle growth, GDF8 is also associated with bone metabolism. However, the function of GDF8 in bone metabolism is not fully understood. Our study aimed to investigate the role of GDF8 in bone metabolism, both in vitro and in vivo. Our results showed that GDF8 had a negative regulatory effect on primary mouse osteoblasts, and promoted receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro. Intraperitoneal injection of recombinant GDF8 repressed bone formation and accelerated bone resorption in mice. Furthermore, treatment of aged mice with a GDF8 neutralizing antibody stimulated new bone formation and prevented bone resorption. Thus, our study showed that GDF8 plays a significant regulatory role in bone formation and bone resorption, thus providing a potential therapeutic pathway for osteoporosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1440-1681.12728 | DOI Listing |
J Orthop Surg Res
January 2025
Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.
View Article and Find Full Text PDFBMC Musculoskelet Disord
January 2025
Department of Pediatric Orthopaedics, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.
Purpose: Ollier's disease (multiple enchondromatosis) can cause severe lower limb length discrepancy and deformity in children. Osteotomy and limb lengthening with external fixation can correct the lower extremity deformity. There may be lesions in the osteotomy part (OP), and the internal fixation part of the external fixation(FP).
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.
Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address:
In this work, six bovine bone gelatin (type B) samples with varying molecular weight (MW) fractions, comprising α-chains, high- and low-MW fractions, were prepared using ethanol precipitation and pH adjustment. The influence of molecular weight distribution (MWD) on gelatin gel strength was examined, along with the effects of these different MW fractions on microbial transglutaminase (MTGase) cross-linking gelatin. The results showed that, without MTGase treatment, high-MW fractions acted as key fillers in the formation of gelatin gel networks, while α-chains and their aggregates played a central role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!