Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346138 | PMC |
http://dx.doi.org/10.1007/s00792-016-0910-2 | DOI Listing |
Virology
December 2024
Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, 310018, Hangzhou, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, 310018, Hangzhou, China. Electronic address:
Late expression factor 3 (LEF3), a multifunctional single-stranded DNA binding protein encoded by baculoviruses, is indispensable for viral DNA replication and plays a pivotal role in viral infection. Our previous quantitative analysis of phosphorylomics revealed that the phosphorylation levels of two serine residues (S8 and S25) located in LEF3 nuclear localization sequence were significantly up-regulated after Bombyx mori nucleopolyhedrovirus (BmNPV) infection, but the underlying mechanism remained unknown. To investigate the impact of phosphorylation on BmNPV infection, site-direct mutagenesis was performed on LEF3 to obtain phosphorylated mimic (S/D) or dephosphorylated mimic (S/A) mutants.
View Article and Find Full Text PDFMicrob Biotechnol
December 2024
Departamento de Química Biológica Ranwel Caputto, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
In this work, we developed a plasmid-based CRISPR-Cas9 strategy for editing Lactococcus cremoris, which allows easy generation of plasmid-free strains with the desired modification. We constructed versatile shuttle vectors based on the theta-type pAMβ1 promiscuous replicon and p15A ori, expressing both the Cas9 nuclease gene (under pH-regulated promoters derived from P170) and a single-guide RNA for specific targeting (under a strong constitutive promoter). The vectors designed for plasmid targeting were very effective for low- and high-copy-number plasmid curing in L.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, USA.
Homologous recombination (HR) is the principal pathway undertaken by a cell for the error-free repair of DNA double-strand breaks that are frequently encountered by the cell. HR can be initiated at the sites of DNA double-strand breaks by generating long stretches of single-stranded 3' DNA overhang through a process called DNA end resection. In one DNA end resection pathway, this is achieved via the concerted effort of specialized machinery involving the RecQ family helicase BLM, the helicase/endonuclease DNA2, and a single-strand DNA binding protein complex RPA.
View Article and Find Full Text PDFJ Anim Sci
December 2024
School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
The rumen plays an essential role in the physiology and health of ruminants. The rumen undergoes substantial changes in size and function from birth to adulthood. The cellular and molecular mechanisms underlying these changes are not clear.
View Article and Find Full Text PDFPolymerase Chain Reaction (PCR) requires thermal cycling to melt DNA and proceed through the subsequent cycles of DNA synthesis needed for exponential amplification. Previously, we engineered a superhelicase, with enhanced processivity and speed, to replace this traditional PCR melting step with enzymatic DNA unwinding while retaining desired PCR characteristics, such as multi-kb amplicon size and applicability to cloning and gene editing outcome assessment. This isothermal amplification method is named SHARP (SSB-Helicase Assisted Rapid PCR) because single-stranded DNA binding protein (SSB) and superhelicases are added to standard PCR reagents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!